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Summary 

Realization of embedded control systems is a complex task. Increasing part of this 
complexity is nowadays located in the design and implementation of software that 
runs them. A major source of difficulties is the limitation of the average software 
developer to understand and design complex behavioral scenarios. A big part of 
this complexity comes from the interaction of concurrently existing entities.  

Similar to the way energy-flow based modeling is used in bond-graph theory as a 
common view in multi-domain physical system modeling, in our approach 
concurrency is viewed as a glue layer that relates different domains and views. 
Concurrency used in a structured way should lead to systems that are simple to 
design and understand, easy to distribute, reconfigure and reuse. 

The aim of this thesis is to develop a graphical design specification language that 
can offer a structured way of handling concurrency. A structured way of using 
concurrency is expected to raise the abstraction level away from concurrency 
problems. In that way, the introduced design specification language should become 
a vehicle for reducing complexity in inherently concurrent systems (e.g. complex 
control systems).  

Our approach is not to invent the wheel all over again. Instead, we want to build 
upon the existing body of knowledge provided by relevant formal methods. 

SystemCSP is based on the principles of both component-based design and CSP 
process algebra. It is applicable for specifying, documenting, visualizing and 
formal verification of component-based designs. It provides a way to visualize 
architecture, behavioral patterns of components, intra–component interactions and 
execution relations among components. 

First, the elements of the language are introduced. Than, this core set of language 
elements is extended with elements dedicated to the specification of time 
properties. The thesis also offers some insights and some possible approaches for 
analysis and implementation of real-time systems. The core of the notation is 
further extended by introducing a set of higher-level primitives in the form of 
reusable design patterns (see Figure 1-6). These patterns can be used in designs as 
basic building blocks, extending in that way the vocabulary and raising the level of 
abstraction of design processes.  

The usability of the notation for specifying interactions in embedded control 
systems is tested by designing software for a complex control setup consisting of 
several cooperating devices. This test case is a step towards industrial-strength 
setups.  

SystemCSP seems to be convenient way to specify interactions in concurrent 
component-based embedded control systems.  

 

 



 

 

 

 



 

1 

1 Introduction 
The greatest challenge to any thinker is stating the problem in a way that 
will allow a solution.   
    

Bertrand Russell  
 

Making embedded control systems is a multidisciplinary activity. It includes 
physical system modeling in various domains (e.g. mechanical, electrical, 
chemical, and thermodynamic), designing control algorithms, and implementing 
them in software programs. This research is focused on the software 
implementation part.  

Compared to conventional programming, the software development in area of 
embedded control systems is somewhat specific. The embedded control systems 
application area does introduce somewhat more stringent constraints. For instance, 
there is a need for more rigorous verification of functional and timing properties. A 
need for performance optimization is additionally increased due to mass-
production and related needs for minimizing software/hardware costs per unit and 
minimizing time-to-market.  

Existing control-domain related CAD tools do provide solid code generation 
support for the software implementation of control laws.   However, building 
complex control systems, where event based interaction between concurrently 
existing components is very important, is not primary concern of such tools. 
Attempt to apply the methods, the design specification languages, and the tools 
from general software development, turns out to be problematic with respect to 
timing predictability, structuring concurrency, minimizing costs, and optimizing 
performance.  

This research introduces SystemCSP, a graphical language for design specification 
of concurrent, component-based embedded control systems.  SystemCSP is 
designed to be an expressive, readable, and structured way to design interactions of 
concurrently existing components. It is based on the CSP formal algebra.  The 
relevant application area for this language is in practical implementations of 
distributed real-time control systems. The proposed design specification language 
can, as well, be used in other software development domains where concurrency is 
inherently present and where focus is on interaction of concurrently existing 
components. 

This chapter starts with introducing some of the key concepts of the research 
context.  Throughout this chapter, instead of providing strict definitions, the chosen 
approach is to provide descriptions that will allow a reader unfamiliar with the 
used terms to grasp their meaning and create intuitive representation of the key 
notions. Section 1.1 of this chapter briefly identifies some notions from the control 
systems application area.  Brief description of the current state of the art, concepts 
and problems in software engineering area is the topic of section 1.2. Section 1.3 
attempts to address issues like: somewhat more detailed problem statement, brief 
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exploration of previous attempts to solve it, setting demands on language features 
and sketching the basic ideas and principles behind the SystemCSP language. 
Finally, section 1.4, gives a short outline of the complete thesis. 

1.1 Control systems application area 
The success of human evolution is mainly due to human’s ability to understand, 
model, control and adapt their environment.  

Modeling is a process of creating an abstracted description of reality. The aim of 
the modeling process is to identify a competent model - the simplest model that 
captures, with sufficient accuracy, all aspects of the system behavior relevant for 
the problem at hand. The purpose of the modeling process is gaining insight in the 
way real entities behave. This insight can later serve as a basis for controlling the 
modeled system by manipulating some of its variables.  

A control system (controller) can be seen as a component added to a system (plant) 
that needs to be controlled. The essence of control is to maintain the desired values 
of certain system variables by manipulating values of input variables of the 
controlled system.  

A control system interacts with its environment via various sensors and actuators. 
Sensors convert physical signals to signals understandable by the control system 
(digital quantities in case of computer-based control). Actuators (motors, valves 
and so on) perform the transformation in the opposite direction (see Figure 1-1).  In 
Figure 1-1 the different types of arrow symbols are used for digital and analogue 
signals. 

 
Figure 1-1  Typical control system (Figure based on (Broenink and Hilderink, 2001)) 

At first, design models of plants and control systems were captured on paper-like 
media and controllers were realized using mechanics and analog electronics. 
Application of computers brought more flexibility in the areas of modeling and real 
world implementation of control systems. With computers, it became easily 
possible to adapt parameters and algorithms of control systems during system 
usage. An even more important gain is the opportunity to easily simulate the 
behavior of a complete system and thus obtain valuable insights into its behavior 
while remaining purely in the virtual world.  

Simulation is the process of exploring the behavior of some system through the 
execution of its model according to the related operational semantics. Different 
initial conditions lead to different traces through the state-space of a simulated 
system. System parameters can be modified in a controlled way and their influence 
on the overall system behavior can be estimated.  
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Figure 1-2  Simulation 

Figure 1-2 illustrates co-execution of the model representing a control component 
(‘Controller block’ in Figure 1-2) and the one representing the controlled system 
(‘Plant model’ block in Figure 1-2). In simulations, the time flow is a property of 
the simulated system and as such independent of real clock time.   

Unlike in simulation, in the interaction with a real plant (see Figure 1-3) the control 
system has to keep pace with the progress of real time. The combination of 
software and hardware that is implementing the control system, should be designed 
to guarantee proper temporal properties of the complete system. Simulation can 
give some insight in the time behavior of the system. Still, only real-time analysis 
can guarantee satisfaction of temporal constraints. A special branch of computer 
science (‘real-time systems’ and related ‘real-time scheduling theories’) is 
dedicated to the task of real-time analysis. 

 
Figure 1-3  Real system 

 In real-time systems, “correctness of the system depends not only on the logical 
result of the computation but also on the time at which results are produced” 
(Buttazzo, 2002).  In those systems, the response should take place in a certain 
time window. Real-time is not about the speed of the system, but rather about its 
relative speed compared to the required speed of its interaction with the 
environment. Rather then fast, the response of those systems should be predictable 
in sense that a guarantee can be given that the response will fall in the predefined 
time window. A fast system will not be real-time if its environment is requiring a 
faster response. A controller implemented with slow computer system can work in 
real-time if it is faster than the response that the controlled plant requires.  

Concurrency is one of the most essential properties of the real world. We can 
perceive that many activities take place simultaneously.  Obviously, a (control) 
system and its relevant environment (plant) exist concurrently. In fact, both plant 
and control system are often decomposed into smaller parts existing concurrently 
and cooperating to achieve a desired behavior. The main source of complexity in 
designed systems stems actually from the simultaneous (concurrent) existence of 
many objects, events and scenarios. Better control over the concurrency structure, 



4  1 Introduction  

 

should therefore automatically reduce the problem of complexity handling. Thus, a 
structured way to deal with concurrency is needed.  

 
Figure 1-4  Distributed computer platform 

This research puts focus on concurrency applied to control systems implemented 
on top of distributed computer platforms. By the term distributed computer 
platform, we will assume a system built on top of a hardware topology consisting 
of several computing nodes interconnected via some kind of network, as illustrated 
in Figure 1-4. In the control systems application area, the most commonly used 
network interconnections are fieldbuses. The term fieldbus is a common name for a 
set of various serial data communication protocols used in control and 
instrumentation system architectures.  

 
Figure 1-5 Control system based on distributed computer platform 

In distributed systems, tasks residing on different nodes execute truly in parallel. 
For studying concurrency phenomena (deadlock, livelock, race hazard, etc.) of a 
system, it is not relevant whether its concurrent execution is truly parallel or 
parallelism is only mimicked via some kind of CPU scheduling. However, for 
studying the real-time behavior of the system, issues like allocation of tasks to 
nodes, processing capabilities of the nodes, network delay times and applied 
scheduling algorithms become relevant. 
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Control systems as the one depicted in Figure 1-1 are often implemented on top of 
distributed computer systems (see Figure 1-4). Distributed computer system 
specialized for the implementation of control systems is typically based on a 
hardware/software platform that has a topology like the one depicted in Figure 1-5.  

In addition to network interconnections between nodes, it contains input/output 
(I/O) interfaces as points where a control system can use actuators to exert 
influence on a plant, or sensors to observe changes in some of the plant’s signals.  

1.2 Software development practice 

Since its very beginning, software development is located somewhere in the middle 
between art, craft and engineering. A major source of difficulties is the limitation 
of the average software developer to understand and design complex behavioral 
scenarios.  

The current state of the art in the software development area is still marked by the 
software crisis phenomena (Dijjkstra, 1972). Software crisis is a term used to 
denote the incapability of existing methodologies, programming languages and 
tools to offer adequate support for development of complex software programs.  

Ever increasing demands on additional features and performance resulted in 
increased complexity of developed software systems. There is a constant need to 
decrease production costs and development time. Teamwork does not scale well, 
because partitioning into subsystems and their later integration is not always trivial. 
As a result, software projects are often late and adding more man power makes 
them often even more late. Verification and debugging of complex systems is 
difficult. (Keding, 2004) 

In the embedded system area, due to cost-efficiency needed for mass production, 
resources used per product are minimized. This results in an increased effect of the 
software crisis. Additionally, in embedded systems, non-functional requirements 
like: performance, reliability, maintainability, safety, fault tolerance, security and 
power consumption are often of equal or higher relevance then just producing 
correct results. In addition, standards and algorithms applied are constantly 
changing, necessitating implementation of flexible and upgradeable architectures.  

All these problems illustrate a need for introduction of a novel design 
methodology. The design methodology should offer a way to structure complexity 
of the system in a way that efficiently utilizes human comprehension capabilities. 
A good idea could be abstracting away from the hardware/software development 
domain, allowing in that way that most of the design is performed at system level 
and postponing hardware/software allocation to later phases. 

1.2.1 Structured approaches  

All major advances in software development are actually in some way extending 
human capabilities to deal with complexity. Most often, this is achieved by raising 
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the abstraction level and introducing some notion of hierarchy. In the beginning, 
programs were written in low-level machine and assembly code. Subsequently the 
view of a programmer was lifted to higher abstraction levels in several phases: the 
concept of operating systems, the introduction of high-level programming 
languages, and finally, the modern object-oriented approach. Object-oriented 
programming (OOP) has added, to the world of software development, many 
concepts comparable to the way the human mind operates.  

Complex software implemented by an immediate ‘coding and fix’ ad-hoc 
approaches is bound to fail. Often it is compared to making a building without any 
prior plans and calculations (Booch, 1993).  Like a properly designed building has 
a certain architecture corresponding to the requirements of the end users, the same 
can be said for a properly designed software system. Instead of the ‘nothing works 
until everything works’ approach, iterative incremental design is often suggested 
(Booch, 1993).  

One of the structured approaches to software design is based on reusing design 
patterns as common solutions to recurring problems. Design patterns (Gamma et 
al., 1994) systematically name, explain and evaluate important and recurring 
designs in order to capture them in a form that can be reused effectively.  Besides 
this  design description, a pattern contains a description of the problem and the 
context where it is applicable, as well as the results and trade-offs emerging from 
its application. 

A software architecture is a set of high-level design decisions regarding the 
employed components and the way they are composed and connected. Design 
decisions left to downstream architects and implementers are not considered part of 
the architecture on the current abstraction level (McConnell, 2003). 

Software architectures are often based on components. A component is a unit of 
composition with contractually specified interfaces and fully explicit context 
dependencies that can be deployed independently and is subject to third-party 
composition (Szyperski, 1998).  

Thus, a new design methodology, that aims to respond to the problems in current 
software development practice, should be capable to reduce complexity by 
imposing more structure in system design.  Design patterns and component-based 
approach seems to offer a structured way to efficiently approach designing 
complex software architectures.  

Visual programming 

It is well known that visual information is easier to understand. Obviously, any 
design methodology will benefit from being based on a visual notation that is 
intuitively clear and self-explaining. Engineers often need to visualize their designs 
in order to obtain better understanding and also to be able to share that 
understanding with other members of the team. As a natural consequence, a class 
of visual modeling languages has emerged.  More and more tools are developed 
with an aim of providing a graphical modeling language for entering designs. Most 
of the tools are also able to generate source code and/or executables from such 
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models. Some of the popular commercially available tools belonging to this 
category are Labview, Rhapsody, Rational Rose, Matlab/Simulink, dSpace,        
20-sim, etc. A distinction can be made between domain specific (e.g. control 
systems) CAD (Computer Aided Design) tools (Matlab/Simulink, Labview, 
dSpace, 20-sim, etc.) and the more general CASE (Computer-Aided Software 
Engineering) tools intended for modeling software designs (Rhapsody, Rational 
Rose, etc.). The latter category most often relies on the UML graphical modeling 
language, which is the de facto industry standard for designing software systems.  

“The Unified Modeling Language (UML) is a general-purpose visual modeling 
language that is used to specify, visualize, construct, and document the artifacts of 
a software system” (Booch at al., 1999). It is tightly coupled to the Object-oriented 
programming (OOP) design philosophy. UML is a  general modeling language. Its 
capability to model abstractions and structural relationships between them, 
regardless of the domain, makes it suitable for defining a domain vocabulary and 
basic structural laws of the domain (i.e. it is suitable for defining a metamodel of 
the domain). UML offers several kinds of diagrams that allow insight in the system 
structure and behavior from different viewpoints. The main disadvantage of UML 
is the lack of a glue layer able to connect all views into a consistent model of the 
system. In addition, a rigorous software engineering approach would require that 
such a glue layer is amenable to formal verification.  

Formal verification 

In all non-trivial projects, a significant part of product development time is spent 
on verification. Most of redesign is still caused by functional errors that could have 
been fixed with proper verification (Keding, 2004).  Informal verification relies on 
performing a large quantity of custom, application-specific tests. Formal 
verification performs property checking based on mathematical techniques and 
precise requirements. In practice, the general weakness of formal verification tool 
implementations lies in the computational complexity (also referred to as “state-
space explosion”) needed to execute verification algorithms. Therefore, in practice 
simulation is often a main vehicle to verify complex systems. Computational 
complexity of verification analysis would be significantly reduced if a system 
could be hierarchically decomposed into separately verifiable building blocks. 
Hierarchical verification takes pre-verified blocks and focuses on block 
interconnections (which is usually a major source of problems). 

 It is desirable that designs are amenable to formal verification based on some 
mathematical formalism. Thus, a novel design methodology able to respond to the 
challenges of the software crisis should be related to some formal method capable 
to allow compositional hierarchical verification of the system. 

Concurrency 

Hardware vendors answer to increasing demands for processing power with 
parallel computer architectures— hyper-threading and multi-core multiprocessors. 
Software must be able to exploit these parallel hardware architectures in a both 
safe and efficient way (Sutter, 2005). 
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The computer science area, up to now, did not provide daily software development 
practice with an adequate response to the need for a simple and structured way of 
handling concurrency. Synchronization primitives offered by existing operating 
systems and programming languages are too low-level (Lee, 2006) and do not 
scale well with complexity (Hilderink, 2005a). Since the higher-level 
synchronization has to be designed for every problem in an ad-hoc manner, it is 
easy to unintentionally misuse those synchronization primitives. This usually 
results in problems that can stay hidden during most of the software lifetime and 
emerge in the worst possible moments.  

The way concurrency is applied is getting more and more mature and structured. It 
is expected that a structured way of using concurrency will soon become 
mainstream and the most important breakthrough in software development after the 
invention of object-oriented programming. Many libraries, e.g. CT libraries 
(Hilderink et al., 1997; Orlic and Broenink, 2004), YAPI (Kock at al., 2000) , Kent 
libraries (JCSP, 2007), design and development tools like Ptolemy (Eker et al., 
2003), UPAAL (UPPAAL, 2007), gCSP (Jovanovic et al., 2004), SHESim/POOSL  
(2007) are based on various theories concerned with discrete event systems 
(Cassandras and  Lafortune, 1999; Roscoe, 1997; Schneider, 2000;  Milner, 1989; 
Kahn and MacQueen, 1977)  in order to structure concurrency.  

Obviously, as concurrency becomes a more and more important design issue, it 
should be easily expressible in terms of the ideal design methodology.  

Concurrency is an unavoidable issue in managing complex software projects. 
Similar to the way energy-flow based modeling is used in bond-graph theory as a 
common view in multi-domain physical system modeling (van Amerongen and 
Breedveld, 2002), in our approach concurrency is viewed as a glue layer that 
relates different domains and views. Concurrency used in a structured way should 
lead to systems that are simple to design and understand, and easy to distribute, 
reconfigure and reuse. Furthermore, designs are expected to be revised step-by-step 
with formally verifiable conformance to the initial specification. Formal checking 
can ensure freedom from concurrency related hazards (like deadlocks, livelocks, 
and race conditions), that are otherwise hard to analyze and prevent in complex 
problems.   

Many formal methods (Formal methods, 2007) and process algebras were 
introduced in order to bring mathematical rigor into the way concurrent systems 
are described and analyzed. For instance, CSP (Hoare, 1978; Roscoe, 1997; 
Schneider, 2000) is one of the first and most influential formal methods. It offers a 
relevant parallel programming model, and seems to be a promising choice for 
handling concurrency. A commercial powerful tool, FDR (Formal Systems, 2005), 
exists, that can provide support for formal checking CSP expressions.  

CSP is also one of the rare formal methods, whose subset was used as a basis of a 
programming language, and thus applied in software development practice. Occam 
(INMOS, 1988) is a simple and easy to use parallel programming language 
designed on CSP principles. It implements a certain subset of CSP constructs and 
allows construction of programs that can be formally checked. Occam and its 
hardware companion, the transputer (Welch et al., 1993) were very powerful and 
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scalable tools for building complex distributed systems. The application area of 
control systems has seen many successful projects based on the combination of the 
two (Fleming, 1988; Sunter, 1994). But with transputers being outperformed by 
other microprocessors, occam also felt into oblivion. Actually, this is not 
completely true. Occam is used in several research environments (Hilderink, 
2005a; JCSP, 2007; Welch and Wood 1996) as a role model in shaping the way of 
for structuring concurrency.  

1.3 SystemCSP approach 

1.3.1 Problem statement 

The aim of this thesis is to develop a graphical design specification language that 
can offer a structured way of handling concurrency. In accordance with previous 
text, a structured way of using concurrency is expected to raise the abstraction 
level away from concurrency problems. In that way, the introduced design 
specification language should become a vehicle for reducing complexity in 
inherently concurrent systems (e.g. complex control systems).  

 Key demands for such a design specification language are: 

• Mapping to some existing formal verification method (this is necessary 
in order to provide support for formal verification without investing 
effort in creating new verification methods and tools) 

• Support for specification of time properties and ways to analyze them 
(this is an essential demand stemming from the control systems 
application domain where timing properties are crucial) 

• Support for modern notions of component-based development 

• Expressiveness (it should be possible to easily express most important 
design decisions) 

• Readability (the notation should be intuitive and easy to understand. It 
should be possible for a person familiar with the notation to grasp fast 
the key design decisions depicted in diagrams) 

• Unambiguous interpretation of specified designs (the language is, in 
perspective, expected to result in a design tool with code generation 
facilities. Ambiguous interpretation would lead to uncertainty in the 
actual behavior of the implementation, making it dependent on tool 
vendors and the way in which code generation facilities are 
implemented.) 

• Scalability (in order to be helpful in managing complexity, designs 
should scale well with increasing the number of used elements. In the 
language definition, this demand maps to the need for careful design of 
graphical elements and a well-thought balance between mandatory and 
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optionally visualized elements of the notation. One way to address the 
scalability issue is dividing systems into subsystems via a tree-like 
containment hierarchy. A somewhat more advanced approach is to 
provide ways to focus, in different diagrams, on different aspects of the 
interaction of a single component.) 

• Applicability of the introduced notation for the design of interactions in 
complex control systems 

Our approach is not to invent the wheel all over again. Instead, we want to build 
upon the existing body of knowledge provided by some existing formal method. 
We opt for CSP theory because of its wide acceptance, significant influence in the 
scientific world, solid body of knowledge and existence of the tools. Additional 
reason in favor of CSP is a lot of experience present in our lab in applying its 
occam implementation in the design of complex control systems.   

The basic idea is to create the graphical representation of CSP and in that way 
bring the benefits obtained by relying on CSP closer to industrial practice. A 
graphical way of entering designs will allow engineers, ignorant to mathematics 
behind the CSP theory, to draw programs that are liable to formal verification 
based on CSP and the FDR tool (Formal Systems, 2005). 

1.3.2 Local context 

This research was carried out within a context defined by several preceding 
research projects.  

During Hilderink’s project (Hilderink, 2005a), basic concepts, and libraries were 
designed in order to bring occam-like concurrency in a modern software 
development practice. A first step was the implementation of libraries that provide 
occam-like compositional and synchronization primitives in popular programming 
languages (C++, Java, C) (Hilderink et al., 1997). Those libraries are known as CT 
libraries. A second step was the creation of a graphical modeling language (GML) 
(Hilderink, 2003) tailored for the design of occam-like CSP-based applications.  

The next project (Jovanovic, 2006) in the line was oriented towards practical 
exploitation of the concepts through the implementation of a design tool (gCSP). 
gCSP tool (Jovanovic et al., 2004) is  based on GML language and it is capable of 
generating source code for CT library, occam and machine readable CSP scripts. In 
addition, that project dealt with dependability issues in GML/CT based systems. 
The gCSP tool is capable to generate an FDR compatible CSP representation of the 
GML designs.  

However, some important topics, like simulation of functional and extra-functional 
properties, real-time analysis, distributed communication, component-based 
development and many other topics were not researched in the scope of the 
aforementioned projects.    

The initial aim of this project was to use the GML/CT approach in distributed real-
time control systems with focus on the distribution aspects (e.g. designing the 
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support for distribution in CT library and estimating the influence imposed by 
using fieldbus network interconnections inside control systems). During the work 
on various practical assignments, some advantages and disadvantages of GML/CT 
approach were identified. As a result, the decision was made to move the research 
topic towards improving the ways to specify concurrent systems in a graphical 
way.  Chapter 2 provides background information that motivates this decision.  

Briefly stated, GML is based on relating process blocks via binary relationships. 
This approach does offer significant design freedom, which is useful in early stages 
of the design process. However, using the approach based on binary relationships 
to specify control flow, makes the control flow difficult to grasp fast in complex 
GML based designs.  

The scalability of the GML design is problematic. In GML, the only way to handle 
scalability problems is using containment hierarchy, where internals of some 
process blocks are hidden on the current abstraction level and visualized in a 
separate view.  

Thus, despite the offered design freedom, the expressiveness of the GML notation 
is, in more complex designs, often hampered due to the cluttered readability of 
control flow and the resulting  reduced scalability. 

In addition, GML is closer to occam then to CSP. Compared to CSP, it lacks some 
useful concepts like: control flow orientation, possibility to implement finite-state-
machine like designs in intuitive way, mutual recursions. Compared to the practice 
of modern component based development, GML also lags behind. 

SystemCSP inherits and extends some useful ideas from GML, while introducing 
new concepts that were lacking there. 

1.3.3 Brief overview of SystemCSP 

SystemCSP is based on the principles of both component-based design and CSP 
process algebra. Such a combination offers more expressiveness than offered by 
the occam-like approach targeted in Hilderink’s and Jovanovic’s work.  

According to Roscoe (1997), “CSP was designed to be a notation and theory for 
describing and analyzing systems whose primary interest arises from the ways in 
which different components interact”. CSP is a language offering a relevant model 
for parallel programming and SystemCSP aims to foster its utilization in the 
practice of component-based design. 

SystemCSP is aimed to serve as a basis for the specification of formally verifiable 
interactions among concurrent entities (e.g. components). It aims to cover various 
aspects needed for the design and development of distributed real-time control 
systems. The structured approach is backed up by defining the metamodel of the 
SystemCSP design domain. In that way, the foundation is set for practical tool 
implementation. 
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SystemCSP is applicable for specifying, documenting, visualizing and formal 
verification of component-based designs. It provides a way to visualize 
architecture, behavioral patterns of components, intra–component interactions and 
execution relations among components. 

The introduced set of graphical elements is related to the basic elements of the CSP 
process algebra. In addition, a set of basic elements related to component-based 
design is added to notation. Those elements can also be mapped to appropriate CSP 
expressions. In this way, designs have immediate mapping to CSP expressions. 
The library is designed that can provide support for the proposed concepts. 

SystemCSP offers a control flow oriented and an interaction oriented visualizations 
of a design.  

The control flow oriented visualization has its focus point on specifying control 
flow as a set of cooperating control flows composed via CSP operators. This kind 
of visualization defines compositional (execution) structure of the application.  

Interaction oriented visualization allows the designer to design an interaction of 
few components in isolation from the rest of the system. In this approach, the 
structure, the set of data flows and the relative compositional relationships among 
participants can be emphasized. The interaction-oriented part of SystemCSP is 
inspired by the GML approach. 

.  

Figure 1-6 Overview of the results of this thesis 

CSP has no widely accepted way to specify and analyze time properties. In this 
thesis, set of language elements is introduced that is dedicated to the specification 
of time properties. The thesis also offers some insights and some possible 
approaches for analysis and implementation of real-time systems. The language 
elements for specifying time properties, together with the proposed ways to do 
real-time implementation, extend the core of the SystemCSP graphical language 
with real-time part (see Figure 1-6). 

The core of the notation is further extended by introducing a set of higher-level 
primitives in the form of reusable design patterns (see Figure 1-6). Defined 
patterns can be used in designs as basic building blocks, raising in that way the 
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level of abstraction. The introduced set of design patterns makes the initial body of 
reusable SystemCSP designs. Introduced patterns can also be viewed as a set of 
examples illustrating a way to design interactions of concurrent entities in 
SystemCSP. As such, patterns were used to evaluate whether and to what extent 
the proposed graphical language fulfills the criteria set in 1.3.1. Feedback obtained  
was used to further improve the notation.      

Usability of the notation for specifying interactions in embedded control systems is 
tested on a complex control setup consisting of several cooperating devices. In that 
way, foundation is set (see Figure 1-6) for practical usage of the notation in 
complex control systems. This test case is a step towards industrial-strength test 
case. It should give us insight whether SystemCSP is a convenient language to 
design interactions in complex control systems.  

1.4 Outline of the thesis 
Chapter 2 introduces the context via focusing on three basic ingredients for the 
creation of SystemCSP: software implementation of CSP, visual representations of 
concurrent systems and component based development. 

Chapter 3 introduces the core of the SystemCSP. In this chapter the elements of 
control flow oriented and interaction-oriented parts of the notation are introduced. 
The language elements presented in this chapter are in fact improved version of the 
ones introduced in (Orlic and Broenink, 2006a; Orlic and Broenink, 2006b). 

Chapter 4 extends the core of the SystemCSP language with real-time aspects. The 
first part of the chapter introduces a way to specify time properties in SystemCSP. 
The second part contemplates about applicability of CSP and SystemCSP based 
systems in the area of real-time systems. The contents of this chapter were 
introduced in (Orlic and Broenink, 2007a).  

Chapter 5 introduces set of SystemCSP design patterns useable in component-
based safety critical real-time control systems.  Patterns are grouped into sets 
related to communication, component-based design, structuring control systems 
and the ones related to fault tolerance. Many of the patterns presented in this 
chapter are based upon the patterns described in (Orlic and Broenink, 2006b) and 
(Orlic and Broenink, 2007a). 

In chapter 6, SystemCSP is used to design software for the complex control setup 
consisting of several interacting simple robotic devices.  For the purpose of this 
project, the production cell setup was made.  

Finally, in chapter 7, conclusions and recommendations are summarized. 

The appendices deal with creating preconditions for practical usage of SystemCSP.  

Appendix A defines the metamodel of the notation, creating in that way a 
foundation for structured design of a prospective tool.  
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Appendix B details the design of a framework that provides support for proper 
functioning of code generated from SystemCSP models. The design principles for 
SystemCSP software framework were introduced in (Orlic and Broenink, 2007b). 
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2 Background 
Eventually, you learn to read groups of words. Where a student will see 
three motions, the experienced man will see one, because he sees the 
overall energy path. 

    Bruce Lee 

The primary aim of this chapter is to introduce the context vocabulary. It provides 
background information for three different aspects that will be in the next chapters 
unified into a new graphical design specification language based on CSP. This 
chapter also illustrates a need for such a holistic approach.  

The first aspect, presented in section 2.1, is related to comparing CSP and its 
practical software implementations – occam and the CT library. Comparison is 
performed for every significant part of the vocabulary.  

The second aspect, presented in section 2.2, is related to ways of visualizing 
concurrent systems. Most attention is given to the graphical modeling language 
GML which is developed by (Hilderink, 2003) in our lab. GML brings in an 
original way to visualize CSP-based occam-like concurrency. 

The third aspect, presented in section 2.3, is related to the current state of the art in 
component-based development. This part introduces basic elements that will be 
used to extend our approach with typical notions from the area of component-based 
development. 

2.1 CSP and its implementations 
Although there are other equally or more relevant representatives of occam-like 
libraries (JCSP, 2007), we choose to focus on the CT library (Hilderink et al., 
1997; Orlic and Broenink, 2004) because it was developed in our lab and is thus a 
starting point of this research.   

The basic elements of occam, CT library and GML are based on CSP operators. 
However, the exact meaning of the concepts in CSP, occam, CT and GML differs 
in some respects. Further text will attempt to carefully observe and emphasize the 
most important differences and similarities.  

2.1.1 Basic elements 

A CSP process describes some behavior in the form of a set of event 
synchronization points related via control flow operators. Process progresses 
through its control flow until it reach an event synchronization point. At this point 
a process attempts to engage in the event associated with the point, and waits until 
its environment (all other processes participating in that event) accepts the offered 
event. An event can take place only when all processes participating in the event 
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are ready to perform it. A set of events in which a process can participate makes its 
alphabet. 

Control flow is specified using several predefined operators. Most important 
operators of CSP are event prefix, sequential, parallel and choice (internal, 
external). These control flow elements are in a CSP process used to relate event 
synchronization points, and to construct in such a way an interaction pattern. Such 
interaction pattern defines a set of event orderings (traces) possible for the process. 

The sequential operator defines a strict order (or sequence) of execution for the 
associated group of processes. The parallel operator defines that the associated 
group of processes is executed concurrently, synchronizing at least on start and 
termination. When a process offers to the environment a choice between several 
alternatives, those alternatives are grouped with the external choice operator. 
Internal choice operator specifies that the behavior of a process is known to be 
according to one of several possible alternatives. In addition, there is the 
conditional choice (IF) operator, that will, depending on whether some logical 
condition is satisfied, transfer control to either the true or the false branch.  

Any composition of processes is again a process that can be further nested in CSP 
expressions. It offers to its environment events of the contained subprocesses. It is 
in fact possible to hide or rename some events offered to the environment of a 
process. Special operators (hiding and renaming) are dedicated to fulfilling that 
task in CSP.  

Occam puts a restricted form of CSP into practical use. CSP operators are in occam 
represented via PAR (parallel), SEQ (sequential), ALT (alternative) and IF 
constructs. ALT is like the external choice with the difference that it assumes 
joining of control flow. In occam, the internal choice operator is not implemented.  
In addition, occam introduces a prioritized version of the parallel construct 
(PRIPAR). In transputers the PRIPAR construct was supported via a hardware 
scheduler that could deal with two levels of priority. In occam, events of CSP are 
represented in the form of channels.  

The CT library (Hilderink et al., 1997; Orlic and Broenink, 2004) implements an 
API, that maps to the syntax elements of occam. The CT library follows the occam 
model as far as possible. Basic occam primitives are implemented in an object-
oriented way. Every process is actually implemented as an object and is thus a 
tangible entity that has both behavior and structure. Special classes are 
implemented to provide the functionality of the constructs.  

In addition to implementing all occam constructs, the PriAlternative, a 
prioritized version of the ALT construct is introduced. In CT, constructs are 
created by instantiating classes defining the behavior of that construct (classes 
(Pri)Parallel, Sequential, (Pri)Alternative). Leaf processes in a tree-
hierarchy are user-defined classes that must be derived from the common class 
Process in order to allow Construct classes to deal with them.  

Two types of communication relationship are possible: rendezvous channels 
(synchronization points comparable to events of CSP) and variable channels (not 
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synchronized, comparable to variables of CSP) named sometimes var-channels in 
context of the GML/CT approach.  

2.1.2 Grouping 

In CSP, grouping of event expressions is done via parenthesis symbols. In addition, 
it is possible to name some parts of event expressions and refer to them by name 
from any other part of a CSP description. The process expression P;(T;(Q || R)) 
means that there is the sequential composition (;) of process P and the process 
(T;(Q || R) that is a sequential composition of process T and of the process (Q || R) 
that is parallel  ( || ) composition of processes Q and R.  

The way grouping is specified in occam, is based on the hierarchical structure of 
occam programs. Every construct starts with its symbol. The scope of the construct 
is actually determined via indentation that mimicks the hierarchical structure of 
program. The CSP expression P;(T;(Q || R)) would in occam implementation look 
like: 

SEQ 
 P 
 SEQ  
  T 
  PAR 
   Q 
   R 

Listing 2-1 Code snippet illustrating grouping in occam 

In occam, a process has access to the variables defined anywhere in the hierarchy 
of its parent processes.  

In CT, constructs are created by instantiating classes defining the behavior 
equivalent to the appropriate construct (classes (Pri)Parallel, Sequential, 
(Pri)Alternative). Grouping is thus made by creating an instance of the 
construct and assigning chosen user-defined processes to be its subprocesses. The 
CSP expression P;(T;(Q || R)) is in CT library specified as: 

Parallel* par = new Parallel (Q, R); 
Sequential seq1= new Sequential (T, par); 
Sequential seq2 = new Sequential (P, seq1); 

Listing 2-2 Code snippet illustrating grouping in the CT library 

Since in CT both user-defined processes and their parent processes are 
implemented as objects, a user-defined process does not automatically gain access 
to the variables defined in the parent scope (as it was the case in occam).  Instead, 
copying data back and forth or passing references to those variables must be 
performed. The CT libraries use the concept of variable/var channels (see Table 
2-1) for this purpose. Variable channels are channels without synchronization, 
used to pass values of shared variables across process boundaries.  
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2.1.3 Event prefix and sequential operators 

CSP makes a distinction between the event prefix operator (→) and the sequential 
(;) operator. Both specify the order of execution. The prefix operator is used to 
connect an event end on the left side of the operator and the rest of the process on 
the right side. The sequential operator is used to group two processes where the 
second process is executed immediately after the first one has terminated. E.g. the 
process expression: ev1 → (P1;P2) starts with event ‘ev1’ and after its occurrence, 
sequential composition of processes P1 and P2 is executed. 

In occam and CT libraries, the code of a single process is normally written in a 
sequential manner, statement by statement. Consequently, the prefix operator is not 
needed: an event from the left side of a prefix operator is placed in one statement 
and the rest of the process in the next statements. The same holds for the sequential 
operator. However, since the sequential operator also has a role of grouping parts 
of code into reusable and maintainable parts, both occam and CT libraries provide 
a Sequential construct. 

2.1.4 Parallel operator 

The CSP parallel operator allows grouping of two or more processes that are 
obliged to synchronize on start and termination (events). In addition, the parallel 
operator provides ways to specify whether the combined processes should 
synchronize on some additional, user-defined, events. The connection between 
user-defined event ends belonging to composed processes is made by specifying 
them as a part of the synchronization alphabet associated with the operator.  If the 
synchronization alphabet is not specified, then the assumption is that it contains all 
those events that do appear in both composed processes. Interleaving parallel is 
the parallel operator with no events in its synchronization alphabet.  

Event synchronization is named channel communication in case when only two 
event-ends participate and there is an associated set of data communications in one 
or both directions. 

In occam, a PAR construct contains two or more processes and it defines that all of 
its subprocesses are executed in parallel, that is by separated flows of control. It is 
not relevant for the construct whether a pair of processes is intended to synchronize 
on some user-defined event or not. Instead of explicitly specifying events on which 
processes synchronize per every parallel operator, the concept of channels is used.  

A channel is an infrastructure element that encapsulates the point of event 
synchronization. Occam channels assume both rendezvous synchronization and 
unidirectional communication, where exactly two event-ends participate in 
synchronization and data transfer is directed from the writer side to the reader side. 
The processes accessing the channel are not aware of each other; they 
communicate by accessing the same channel for a read or write operation. Upon 
accessing the channel, their further execution is blocked until the data transfer is 
performed. 
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The alphabet on which two parallel processes synchronize is in this way implicitly 
specified in their channel interconnections. For the operational semantics of a 
parallel construct in occam, explicit enumeration of alphabets on which processes 
synchronize is thus not needed and not foreseen in the language syntax. Similarly, 
the renaming and hiding operators are superfluous in a channel-based 
interconnection of processes.  

Considering this issue, the CT library follows the occam style. A Parallel 
construct in the CT library spawns separate user-level threads for every subprocess. 
Synchronization points are defined by channel interconnections. 

2.1.5 Choice operators and constructs 

Like the parallel operator, the choice operator essentially branches the related 
control flow on several independent control flow paths. Unlike the parallel operator 
where all branches are executed in parallel, the choice operator means that only 
one branch is chosen to be executed. An external choice is letting the environment 
of the process (all other processes) to choose a branch (one of the offered 
alternative control flow paths) to be executed. 

External (deterministic) Choice 

In case of a guarded alternative operator ( | ), the choice is offered between events.  
After the environment has chosen one of the offered events, the control flow will 
continue following the branch associated with the chosen event.  

In case of the CSP External choice operator ( □ ), the choice is offered between 
processes. The process that first accepts some event from the environment will be 
chosen. This usually boils down to the guarded alternative operator because 
offered processes usually start with an event. In the CSP description below, process 
choice1 based on the guarded alternative operator and process choice2 based 
on the external choice operator offer actually the same options to the environment. 

 
Neither the guarded alternative operator, nor the external choice operator, assumes 
that there is a common join point of the alternative branches. 

The ALT construct of occam is a somewhat modified guarded alternative operator 
of CSP. The main difference is that every fork of the control flow on two or more 
alternative branches is paired with a join where all those branches meet. 
Introducing this limitation makes the structure of occam programs expressible as a 
strict tree-hierarchy consisting of constructs as branches and user-defined 
processes as leaves.  
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In occam, the offered events are taking the form of channels guarded for 
communication attempts. The ALT process waits until one of the channels (for 
which the associated logical condition is set to true) becomes ready, and then it 
executes the associated process.  If the environment in the same time accepts two 
or more events, this is in theory resolved by choosing one of the ready channels 
randomly. In practical implementations, often the first ready channel from the list 
is chosen (that is why the occam/transputer implementation of ALT is sometimes 
referred to as prioritized ALT or PRIALT).  

A typical ALT construct looks as in: 

 [logical condition 1] & channel1 ? data   
  Process1 
 [logical condition 2] & channel2 ? data 
  Process 2 
 [logical condition 3] & SKIP 
  Process 3 

Listing 2-3 Typical ALT construct in occam 

In occam, only input channels can be guarded, there are no output guards.  

The CT library implements the Alternative construct as a class whose behavior 
is based on the ideas of the occam ALT construct. The implementation of the 
Alternative construct (Orlic and Broenink, 2004) allows several different 
working modes (preference alting, prioritized (guards), fair, FIFO), introduced to 
allow several criterias for making a deterministic choice in case more than one of 
the alternatives is ready for execution at the same time. The preference alting 
mechanism (Hilderink, 2005a) enables that, in case several guards are ready, a 
choice is made by comparing the priorities of the processes from the environment 
that are attempting to access the guarded channels. The prioritized version of the 
Alternative construct (PriAlternative) gives preference according to the 
order in which guards are specified in the PriAlternative construct.   

The alting in the CT library assumes that a channel can be guarded by some 
Alternative construct only from one of the exactly two event-end sides (there 
can be either an input or an output guard associated with a channel).  A guarded 
channel is just a channel with an associated guard. A guard is an object inside an 
alternative construct associated with a channel and a process. When a guarded 
channel is accessed by the peer process, then the guard becomes ready and is added 
to the alting queue. The way in which guards are ordered in this queue, determines 
the working mode (preference alting, prioritized, fair, FIFO) of the alternative 
construct.  An Alternative construct is thus a single point where the decision of 
a choice is made. 

A guard that behaves the same as the combination of a logical condition and a skip 
process as in branch 3 of the occam sample code in Listing 2-3 is in the CT library 
named a skip guard. A skip guard has no channel associated. Readiness of this 
guard depends only on the state of the associated logical condition. 
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Conditional (IF) choice  

CSP defines a conditional choice operator. If the associated condition equates to 
true, then the control flow will perform the process specified as left operand. In 
case that condition equates to false, control flow will perform the process specified 
as right side operand.   The following example illustrates this: 

 
In this example, if the condition equates to true, a process expression is executed 
that starts with event ‘ev2’. After performing the associated data communication 
(from channel ‘ev2’ to variable x), the process will behave again as process P. In 
case that the condition equates to false, process P will perform event ‘ev1’ and 
than successfully terminate by performing the SKIP process (process that does 
nothing, but successfully finishes). 

Occam, CT and GML have different levels of support for specifying a conditional 
(IF) choice. In occam, the IF conditional statement is considered as a decision 
making construct. It is somewhat similar to the ALT construct with the distinction 
that, instead of guarded by a combination of logical condition and channel 
readiness, the alternative options are guarded only by logical conditions. 
Consequently, the branch to be executed is in the IF construct resolved 
immediately when the IF construct is entered: there is no waiting involved.  In 
occam, the IF construct is priority structured. The process associated with the first 
condition that equates to TRUE is executed. If no condition equates to TRUE, the 
resulting action is equivalent to STOP and thus causes a deadlock. If it is possible 
that no condition equates to true, usually an additional branch is added at the end, 
with a condition that is always true and has as resulting action the SKIP process. 
The code below illustrates the typical use of the IF construct in occam:  

IF  
 [logical condition1] 
  Process1 
 [logical condition2] 
  Process2 
 [TRUE] 
  SKIP 

Listing 2-4 Typical IF choice construct in occam 

In the CT library, it is assumed that the behavior of the IF construct can be imple-
mented using if/then and switch control blocks of the native language (e.g. C++).  

Internal choice 

The Internal choice operator ( ∏ ) specifies that the process will, in some way, 
internally choose one of the several possible branches. Using the internal choice 
operator is a way to specify that a process will behave in one of the specified ways, 
but without specifying exactly how. The power of the internal choice is thus that it 
provides abstraction capabilities to describe the important aspect of process 
behavior without going into details of actual implementation. In that way it is 
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allowing incomplete but formally checkable specifications. Through the procedure 
of refinement, internal choice operators are usually replaced with other more 
detailed specifications.  

The internal choice is thus an important abstraction mechanism, extremely useful 
in early stages in the process of top-down, stepwise refinement design. It is not 
very useful for operational execution. Therefore, the occam and the CT library do 
not have support for the internal choice.   

2.1.6 Finite state machine based designs 

Simple CSP processes, made out of only event synchronization points connected 
via instances of the event prefix and of the guarded alternative operator, are often 
visualized using a Finite State Machine (FSM). Every node in such a FSM 
represents a state of the process and every edge/transition is associated with some 
event. A single transition leading from some state defines an event prefix operator 
and multiple transitions leading from a single state define a guarded alternative 
operator. With the guarded alternative of CSP, no join of branches is assumed, and 
the branches can lead to any other state, or one can reference other processes in 
alternative branches. This is compatible with the FSM-based visualization. 

The Occam/CT/GML choice (ALT construct) is, as explained before, somewhat 
different than the CSP external choice operator. The ALT kind of choice requires 
that all alternatives are eventually joined.  Consequently, FSM-like designs is not 
straightforward to implement in occam, and one needs to develop special design 
pattern for this purpose.  

For instance, a solution that seems to be most close to common sense is to have a 
variable that keeps track of the current state, and a single Alternative construct. 
The Alternative construct has a dedicated subprocess for every transition (the 
occurrence of an event that leads the FSM from one state to another) in an FSM. At 
any time, only the branches representing the transitions leading from the current 
state would have associated logical conditions enabled. Associated subprocess will 
be invoked by the event triggering FSM transition and the task of the invoked 
process is only to update the variable representing the state.   

The code obtained using this pattern is not intuitively readable.  

Another issue relevant for implementing FSM-like designs is that, in CSP, 
recursion is possible simply by referencing (in CSP expressions) names of the 
processes defined elsewhere. Occam and CT lack ways to express recursion in 
ways other then repeating the same part of behavior in a loop.  

2.1.7 Priorities 

CSP is ignorant of the way concurrency is implemented. Concurrency phenomena 
involving parallel processes interacting via rendezvous synchronizations, are the 
same regardless whether the processes are executed on separate processors or using 
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some time-sharing algorithm on the same processor.  However, the temporal 
characteristics are different in the two cases. In case processes are executed by the 
same microprocessor, the most commonly applied scheduling schemes are based 
on associating priorities with processes. In real-time systems, achieving proper 
temporal behavior is of utmost interest. Therefore, in real-time systems priorities 
are attached to schedulable units according to some scheduling algorithm that can 
guarantee meeting time requirements.  

In addition to the PAR (parallel) construct, a prioritized version of the PAR 
construct, the PRIPAR construct, was introduced in occam. It specifies parallel 
execution with priorities assigned according to the order of adding subprocesses to 
the construct. However, on transputer platforms only two priority levels were 
supported and a PRIPAR was therefore used only on top level. Additional priority 
levels were sometimes implemented in software (Sunter, 1994). 

As in occam, the PriParallel construct of the CT library defines relative 
priority ordering of composed processes, based on the order of adding processes to 
the construct. This allows for a user-friendly priority assignment based on the 
notion of the, more or less intuitive, relative importance of processes compared to 
other processes. The possibility to use a hierarchy of PriParallel and 
Parallel constructs  creates a possibility to have an unbounded number of 
different priority levels in a program. Note however, that priority ordering, of all 
processes in a system, is not necessarily a strict ordering, but rather a set of partial 
orderings.  

Scheduling in the CT library is distributed in PriParallel constructs. When a 
construct gets the processor, it will continue executing its subprocesses untill they 
are finished or until some higher-priority process has become ready to be executed.  

No underlying theory exists that can be directly applied to guarantee real-time 
execution in cases where processes communicate via rendezvous based message-
passing. Chapter 4 deals with those issues in more details. 

2.1.8 Exceptions 

The concept of exceptions is an essential part of modern software development 
practice, but it was not common at the time CSP theory appeared. In CSP, the 
concept of the interrupt operator (Δi) is most suitable for describing the way 
exception handling works. Process P Δi Q is a process that behaves as process P 
until either P terminates successfully or until an event ‘i’ occurs and activates 
process Q. In the latter case, further execution of process P is aborted and process 
Q is executed instead. Despite its name, the semantics of the Δ operator is much 
closer to the termination model of exception handling than to interrupt handling, 
since it implies termination of the process used as the left hand-side operand. 

Occam does not have support for exceptions. 

In the CT library, upon an exception occurring in a process, the process terminates 
and an exception is thrown and propagates upwards the process/construct 
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hierarchy; the exception is eventually being caught by the exception 
construct that forwards it to the associated exception handler. If the 
process where the exception occured is inside an Alternative or Sequential 
construct, the exception that cannot be handled by the subprocess will interrupt the 
associated parent construct. The interrupted construct forwards an exception 
upwards the tree hierarchy. With a Parallel construct, the situation is however 
different because other subprocesses do continue to execute until they terminate. 
All exceptions thrown by the subprocesses of a Parallel construct are collected 
in an ExceptionSet object and handled only after the Parallel construct 
terminates (i.e. when all subprocesses terminate, successfully or exceptionally). 
One can however force other subprocesses to terminate via the channel poisoning 
mechanism (via infecting a channel with an exception). Every attempt of a process 
to access a poisoned channel, results in raising an exception.     

2.1.9 Discussion 

An application area of interest in this research is control systems area. CSP offers a 
structured way of handling concurrency. However, since CSP is an asynchronous 
(i.e. not synchronized with time) approach, it might not be the perfect match for 
implementation of precisely periodic control loop calculation schemes. Chapter 4 
will attempt to shed more light on this issue. 

Instead of synchronization with time, rendezvous based synchronization of event-
ends participating in the same event is performed.  This makes CSP convenient to 
structure concurrency in event-driven supervision and sequence control layers and 
in additional components necessary in complex control systems. 

The CSP description does not really have a strict hierarchy. Any named process 
can be invoked from any part of the description. As a consequence, after forking 
the control flow, as is done in the case of parallel or choice operators, the created 
branches do not have to join in the same place. In this way, a CSP description can 
capture any concurrent behavior (e.g. FSM-like descriptions that do not have a 
tree-like hierarchy with processes as firm structural units). 

Occam, as a language inspired by CSP, adopts process architecture with message-
passing channel communication. This kind of architecture turned up to be 
convenient for building large-scale scalable distributed programs. The CSP notion 
of events is in occam restricted to channels. Channels are used to perform 
rendezvous synchronization and unidirectional communication between exactly 
two processes. 

The notion of a process is in occam also somewhat different than in CSP. A CSP 
process is essentially a description of a behavior that can be just a named point in a 
control flow. An occam process is a structural unit alike to a component in every-
day software development practice. Occam processes are grouped into constructs 
in such a way that every process has one immediate parent construct (except the 
top-level construct of course). An occam program is thus a tree-like hierarchy with 
user-defined processes as leaves and constructs as branches. With this approach, 
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some possibilities offered by CSP (e.g. mutual recursion and natural expression of 
FSM-like designs) cannot be expressed in occam elegantly.  

Obviously, although the basic elements of occam are adopted from a subset of 
CSP, the related philosophy and the way of thinking in occam is rather different 
from the one in CSP.   

At the time when CSP and occam appeared, the dominant programming style was 
imperative. Object-oriented programming (OOP), which is the preferred style 
nowadays, was not yet conceived. Although the object-oriented programming 
worldview introduced a more structured way to handle complexity, it failed to 
provide an adequate concurrency model. Blending the process orientation of occam 
with the object-oriented programming orientation seems a promising concept. 

CT libraries adopt the occam-like programming model implemented in an object-
oriented programming way. However, from the users point of view, object-
oriented programming is in occam-like libraries restricted to lower level objects 
encapsulated inside user-defined processes. In this way, user-defined process 
became alike to component whose internal content and behavior is specified in 
sequential object-oriented way. The components obtained in that way can be 
further composed using constructs and do synchronize with other components 
exclusively via access points named channels. 

Though a CSP process can be implemented as an object, essentially a CSP process 
is not an object. While an object is an entity, a process is focused on defining some 
behavior, possibly a behavior attributed to an object, part of an object or a set of 
objects.  

In the CT library, processes and constructs are implemented as objects, imposing 
more strict boundaries for the variables scope then in occam. The scope of 
variables belonging to some process is, due to encapsulation, limited by the borders 
of the object implementing that process.  

Following the semantics of CSP events, the channels of occam and the CT library 
are synchronous (rendezvous based). However, existing real-time scheduling 
theories are based on process models with asynchronous communication. 

Occam and CT libraries do not use the full expressiveness of CSP. Things that are 
easy to express in CSP, like recursion other then looping and finite state machine 
kind of behavior, is not straightforward to implement in occam and CT libraries. 
The internal choice, which is an important abstraction mechanism, is also missing. 
The Alternative construct differs from the external choice of CSP in a sense 
that it implies not only forking but also a common join point of alternatives. 

2.2 Visualizing concurrent systems  
Humans can much better comprehend and communicate visualized behavioral 
scenarios then the same scenarios given via some mathematical description, e.g. 
CSP formulas. Still mathematical descriptions are necessary for precise analysis of 
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models. A workaround is to introduce a set of intuitive visual elements that can be 
automatically mapped onto proper mathematical descriptions. There are many tools 
and technologies that define own visual notations. In this section, however, we 
focus our intention to those that were most influential in the scope of this project.  

UML is the de-facto standard in software development practice. After briefly 
discussing the UML with focus on its support for specifying concurrent systems, 
the overview goes towards visualizing CSP based designs. A finite state machine 
based way of visualizing CSP processes is often used in CSP literature and is thus 
described in a separate subsection. GML, as the CSP based, occam-compatible 
graphical language (Hilderink, 2003), is relevant to explain in detail because it is 
predecessor and starting point of SystemCSP in the local research context. GML 
has in fact served as an inspiration for the interaction oriented part of SystemCSP. 

2.2.1 UML 

UML is designed to offer general support that can be used in various development 
processes (Booch at al., 1999). UML contains several kinds of diagrams (see 
Figure 2-1) based on different basic elements. There is no mapping or firm relation 
between those separate views in which the same entities can participate.  

 
Figure 2-1 UML is a set of various types of diagrams 

UML use-case diagrams specify the functionality and behavior of a system as 
viewed by its user (actor in UML terminology). It defines what the system does, 
but not how. An example of a UML use-case diagram is given in Figure 2-2. 

A communication relationship relates an actor with a use-case (oval block 
representing the functionality offered by system). The behavior of use-case blocks 



2.2 Visualizing concurrent systems 27 

is expressed via unstructured text, pseudocode or UML interaction diagrams.  An 
include relationship specifies that the use-case on the source side of the 
relationship includes behavior defined by the use-case on the target side of the 
relationship. E.g. in Figure 2-2, use-case A includes behaviors as defined in use-
cases A11 and A12. An Extend relationship means that the extension use-case 
implements some behavior that is an optional part of the basic behavior. In Figure 
2-2, use-case ‘A12extension’ defines a functionality that can optionally be 
implemented in A12. A generalization relationship is used to relate a use-case 
with the use-case that is special case of it. In Figure 2-2, ‘B impl1’ and ‘B impl2’ 
are two different special use-cases implementing the behavior defined in ‘B 
generic’.  

 
Figure 2-2 UML use-case diagram 

UML class diagrams (see Figure 2-3) allow defining abstractions (classes) in terms 
of attributes they encapsulate, operations they can perform and responsibilities 
delegated to them.  

 
Figure 2-3 Elements of UML class diagram 

Classes can be related via inheritance (“a kind of”) and association relationships. 
A special kind of association relationship is a “part of” relationship. It comes in 
less strict ownership (aggregation relationships) where more than one owner can 
exist and more strict ownership (composition relationship) where only a single 
owner can exist and is responsible for creation and destruction of the contained 
part. The introduction of abstractions and the possibility to define relationships 
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among them, in a way close to the way human mind classifies, thinks and 
establishes relationships, makes UML class diagrams very convenient for defining 
the vocabulary of a domain (i.e. defining a metamodel of the domain).  

UML sequence diagrams (see Figure 2-4) focus on time aspects of interaction. 
Time is flowing downwards and is reflected in the lifeline of every object 
participating in the interaction. It is possible to visualize several kinds of 
interactions among objects, like function calls, returning results of a function call, 
asynchronous signals, creating and destroying of objects.  Mentioned types of 
interactions are visualized as directed lines that do connect the lifeline of a source 
object with the lifeline of the target object. Control focus is a rectangle around 
lifeline used to emphasize control flow. A sequence diagram can contain more than 
one independent control flow, depicting in such way concurrency present in the 
interaction. 

 
Figure 2-4 Example of a UML sequence diagram 

UML2 defines interaction operators like loop, optional and alt (see Figure 2-4) 
used respectively to illustrate the scope of a loop control structure, optional part of 
an interaction whose execution depends on some condition, and conditional 
branching with all possible alternative options of control flow execution given in 
rectangle boxes separated via dashed line. However, those operators, although 
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bringing in the possibility to depict several scenarios in a single diagram, tend to 
clutter diagrams, especially for more complex interactions.  

Concurrency is in UML diagrams best specified in activity diagrams and statechart 
diagrams. However although those diagrams can specify concurrency structure, 
that is not their primary focus.  

An activity diagram (see Figure 2-5) depicts control flow passing through 
structural instances (e.g. objects) and can display action blocks executed along the 
way and conditional branching of control flow according to associated logical 
guards.  Concurrency is in an activity diagram represented via the fork control flow 
element that forks control flow into several parallel flows of control, and the join 
control flow elements that joins flows of control. In UML2, activity diagrams 
incorporate some Petri Net concepts (tokens).  

 
Figure 2-5 Example of a UML activity diagram 

A Finite state machine (FSM) defines sequences of states through which an object 
goes as a respond to events. In state machine diagram, nodes represent states and 
vertices represent transitions from one state to another. An approach based on FSM 
is used in CSP books to visualize CSP systems and will be the focus of the next 
section.  

UML state diagrams (see Figure 2-6) origin from the statechart approach (Harel 
and Politi, 1998). Compared to the classic finite state machine (FSM) approach, 
they build upon the state machine idea by adding many concepts useful in practice 
(e.g. allowing nesting states and remembering deep or shallow history while 
moving vertically through the hierarchy of states). Substates in UML statechart 
diagrams can be sequential or concurrent. An object implementing a state machine 
with nested sequential states can be at any time only in one of the nested states. An 
object implementing state machine consisting of nested concurrent substates is in 
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all substates in the same time. Entering composite state, that contains concurrent 
substates (e.g. substates s21 and s22 of state 2 in the example from Figure 2-6), 
assumes existence of fork of control flow to concurrent substates. Exit from such 
state assumes the join of control flow.   

 
Figure 2-6 UML statechart diagram 

Critique 

As stated in (Marwedel, 2003), UML does not have precise semantics, and as such, 
it is most useful in early stages of the design, and for informal communication. The 
lack of precise semantics makes complete consistency checks between different 
diagrams impossible. This informal way of using, based on local conventions, is 
often creating problems in communicating designs between stakeholders.  

Another significant problem with UML diagrams is that they do not put main focus 
on visualizing the concurrency structure of a program. 

According to the survey (Lange et al., 2006) on UML usage in practice: adherence 
to standards is loose, there are no objective criteria to verify that a model is 
complete or satisfies some tangible notion of quality, miscommunication is 
reported in more than half of the projects, a “wrong” product delivered is 
mentioned and a high amount of testing effort is needed. According to this survey, 
some of the main problems with UML are: design choices scattered in unrelated 
views, informal use, limited possibility for checking consistency between different 
views, disproportion between specified architectural details and the needs of 
implementers. 

In UML, semantics necessary for precise specification of a system can be obtained 
only if UML is combined with some formal language (e.g. SDL). Approaches 
based on a combination of UML and CSP also exist. (Crichton et al., 2002) 
proposed a design pattern for specifying concurrency patterns using a subset of 
UML, in a way that is formally verifiable via CSP. Their approach is based more 
or less on the combination of statecharts and activity diagrams. But, such an 
approach is fitting existing diagrams into something they were not designed for. It 
also suffers from not allowing full expressiveness of CSP. The aim of that research 
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was to create a formally verifiable concurrency design pattern using existing UML 
diagrams. For our purpose, insisting on the usage of UML diagrams is not an issue.  

2.2.2 Finite State Machines 

In CSP related literature (Roscoe, 1997; Schneider, 2000) finite state machine 
(FSM) kind of diagrams are often used to illustrate CSP interaction patterns. Every 
node in such a FSM represents a state of the process and every edge/transition is 
associated with some event. Figure 2-7 presents one CSP description and its 
associated visualization based on a FSM. In fact, the FSM in Figure 2-7 is a typical 
UML-like visual representation of a state machine. State machine diagrams in CSP 
literature differ from UML statecharts in depicting states as small circles with state 
names written outside the state circle. In addition, the start and exit states bare no 
special visual difference to other states. The difference is of course that there are 
no transitions leading to the start state and no transitions leading from the exit 
state.  

 

 
Figure 2-7 Classical FSM diagram 

One can thus visualize some CSP descriptions using FSM diagrams. Looking in 
another direction, CSP expressions can be seen as an attempt to capture visual 
FSM specifications in the form of a textual language sequential stream of 
characters.  In order to transform an FSM into CSP expressions, some states are 
given names and considered to be CSP processes. Note that the same FSM can be 
mapped onto different CSP descriptions depending on the choice of the states to 
which names are assigned. However, a CSP representation of an FSM, based on 
the minimal number of process names is unique (of course, provided that one 
abstracts away from differences in chosen names). Such a representation is 
obtained if only the start state and states reachable from more than one other state 
(states where a join of several control flows is performed) are named. In Figure 
2-7, states 3 and 6 are named respectively Temp1 and Temp2, defining in such a 
way auxiliary processes needed as recursion entry points in the CSP description. 
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An obvious question here is why invent something new, if one can use FSM 
diagrams as they are for specifying CSP processes. If one aims to capture only 
simple CSP processes that contain only guarded alternatives, prefix operators and 
event occurrences, then an FSM is a good enough abstraction. Those diagrams are 
however not used to depict examples containing, for example, parallel, internal 
choice, hiding and renaming operators. Other issues are that different diagrams can 
be drawn for the same process (depending on whether recursion is expanded and 
how many times), and that parameterized processes with infinite number of states 
are impossible to draw.   

Processes composed in parallel are sometimes (Schneider, 2000) represented as 
rectangle boxes adorned with ports representing events in the alphabet of the 
process. Such process boxes are then related via lines that connect ports 
representing event-ends offered to the environment for synchronization.  

One of the approaches to a structured way of specifying concurrency derived from 
CCS (Milner, 1989) and CSP process algebras and using state transition diagrams 
is named FSP (Magee and Kramer, 1999). FSP provides a Java library 
implementation and a tool for model animation and checking. Compared to CSP 
literature, this approach goes one step further in visualizing process expressions. 
The initial (start) state is shaded. The letter E inside a state circle denotes the end 
state. A sequential composition is created by concatenating two finite state 
machines: making a transition from the end of a subprocess to the start of the next 
one in line and hiding start and end states resolved in this way. A parallel 
composition is also visualized via creating an equivalent state machine or 
alternatively again as connecting appropriate ports of boxes representing 
subprocesses. In addition, the notation allows systematic adding of prefixes to the 
names of event transitions by altering the process labels associated with states. 
Hiding is performed by replacing the event name with the keyword tau and 
reducing the state machine by merging states related by the tau labeled 
transitions. Renaming is performed by making a new state machine with names 
changed according to the replacing function. Time is introduced using tick 
events.  

Another tool based on the CSP and FSM way of visualizing is i-MathicStudio 
(Hilderink, 2006). Software design in i-Mathic consist of hierarchies of black-box 
(abstract) and white-box (concrete) specifications, which are subject to refinement 
verification. The model checker FDR is used for refinement verification and 
detecting deadlocks and livelocks in the software specification. In i-MathicStudio 
one of the ways to edit FSM-like CSP specifications is in the form of a state 
transition table, where each row contains one transition from some state to some 
other state.  Rows are grouped according to the source state. Columns specify 
conditions, events, actions, the next state and a reference field respectively.  

2.2.3 GML  

In previous research at our Lab, GML (Hilderink, 2003, 2005a) was developed. 
GML is a design methodology and visual notation related to occam. At the end of 



2.2 Visualizing concurrent systems 33 

the design process, a complete GML model always defines an occam-like tree 
hierarchy with constructs and wrapper processes as branches, and user-defined 
processes as leaves. The main difference compared to a simple visualization of 
occam-like hierarchies is that in GML processes are related via binary 
relationships.  

There are two types of binary relationships: compositional and communication. 
Any two processes are related by one of the compositional relationships: 
sequential, (pri)parallel, (pri)alternative. The meaning of those relationships is 
derived from the analogue CSP operators and occam constructs.  

Communication relationships can be either unsynchronized var-channels or 
rendezvous-based channels. Var-channels are equivalent to using shared variables 
and cannot be used for communication between processes related via a parallel 
relationship (concurrently existing processes). Rendezvous channels are equivalent 
to occam and CSP channels and can be used only between processes that do exist 
concurrently. 

A process is in GML depicted as a rectangle. A line representing compositional 
relationship is adorned with the symbol of appropriate CSP-like compositional 
relationship. Symbols for two types of communication relationships are given in 
Table 2-1.  

Table 2-1  Communication relationships 

CSP occam        CT library   GML Symbols   

            
channel 
(kind of 
event) 

 

channel 

 

Rendezvous (synchronous) 
channels 

 

 

 

variable 

 

variable 

 

VAR  (asynchronous) 
channels 

 

 

 

It is possible to display only communication relationships (communication view) or 
only compositional relationships (compositional view). The Communication view 
and the composition view define two separate layers of edges on top of the same 
process nodes layout. Communication and compositional view are therefore 
considered orthogonal. Sometimes it is convenient to view both layers in the same 
time (hybrid view).  

Specifying a binary compositional relationship between two processes is not 
identical to relating them via a CSP operator or an occam construct. For instance, a 
single parallel binary relationship relating two processes, does not imply 
synchronization on start and termination events as the parallel operator of CSP and 
the parallel constructs of occam and the CT library do. Only a complete set of 



34  2 Background  

 

binary relationships or explicitly grouped relationships of the same type can imply 
that some set of relationships is actually participating in making some occam-like 
construct.  

GML models can express designs that are illegal or underspecified or ambiguous. 
Additional consistency checks are needed before designs can be translated to 
CSPm scripts, occam or CT library code. Compared to constructing an occam-like 
application as a hierarchical-tree, GML models seem to offer more flexibility as a 
design entering view, especially in early stages of the design, when relationships 
between some processes are known, but the exact borders of the constructs are not 
yet quite clear. 

Sequential 

The binary sequential relationship of GML is a weaker concept then the event 
prefix or the sequential operator of CSP. The GML binary sequential relationship 
specifies precedence rather then exact order. The Sequential construct created 
from the set of binary sequential relationships implies grouping based on 
established  strict order among the involved processes. 

Since event-end synchronization points are in GML considered basic processes 
(writer & reader), GML uses the binary sequential relationship to specify both the 
prefix and the sequential operator. Naturally, sequential relationship whose source 
is an event-end is assumed to be event prefix operator.  In Figure 2-8 the binary 
sequential relationship between the writer basic process and the process P1 is 
mapped to an CSP event prefix operator and the one between P1 and P2 into 
sequential operator. 

 
Figure 2-8 Binary sequential compositional relationships 

Parallel 

In GML, a parallel binary relationship is again weaker than specifying a 
Parallel construct in occam/CT approach. Synchronization on the ‘start’ and 
‘termination’ event is implied for processes grouped in a Parallel construct, but 
not for processes related via binary parallel relationship in isolation. The parallel 
compositional relationship does imply that somewhere upwards in the hierarchy of 
constructs there will be a common parent Parallel construct containing both 
processes related via this binary parallel compositional relationship. A Parallel 
construct is constructed by grouping a set of processes related via parallel binary 
relationships. 

 
Figure 2-9 Binary parallel compositional relationships 

A set of parallel relationships as depicted in Figure 2-9 is ambiguous. Intuitively, 
one would conclude that it is a Parallel construct consisting of P, Q and R. 
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However, the undefined relation between P and R also leave space for 
combinations:  (P; R)) || Q and (R;P)||Q 

Choice  

GML does not define special symbols for the conditional choice and the internal 
choice operators.  As in occam, internal choice is assumed not useful in practice.  

The conditional choice can only be specified inside code blocks using the IF 
control block of native programming language (C++, Java…). In fact, introducing 
an IF choice binary relationship would make GML more expressive. The symbol 
associated with such a relationship could for instance be the same as in CSP. 
Generalization of the IF construct, with more then 2 outgoing branches, is in most 
programming languages supported in a form of SWITCH control structure. 
Semantically, the switch control structure can be implemented using nested if 
statements. Again, introducing the switch symbol as a part of basic vocabulary 
would make GML more expressive.  

GML does define the alternative binary relationship. A grouped set of alternative 
binary compositional relationships is equivalent to specifying the ALT construct in 
occam. As in occam and the CT library, a common join point is assumed for all 
alternative processes. Figure 2-10 gives the GML visualization of CSP expression: 

 (condp & (actionp ; (eventp→ P’))) □ (condq & (actionq ; (eventq→ Q’)))  

 
Figure 2-10  GML symbol for alternative relationship 

The graphical notation maps to the occam notion of ALT construct as a group of 
alternative processes where each one offers an initial event to the environment. 
Comparing the notation to CSP, the way of visualization implies that a choice is 
made between processes as in external choice, but also that events are part of the 
choice operator as in guarded alternative. 

Grouping 

If binary relationships being specified between any two processes, and providing as  
such a complete specification, then it implicitly defines grouping of processes into 
a tree-hierarchy of constructs. For instance, the model in Figure 2-11 a) is 
ambiguous and can have two possible solutions that resolves it to a tree-like 
hierarchy of constructs: P;(Q||R) and (P;Q)|| R,  respectively visualized in Figure 
2-11 b) and c).  

Sometimes it is safe to leave a relationship unspecified because there is only one 
possibility that is not illegal and it can be deduced from other relationships.  
Sometimes it is not. Relying on specifying a complete set of binary relationships, 
in order to specify constructs, obviously clutters even simple diagrams. However, 
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using the grouping notation enables one to reduce significantly the number of 
specified binary relationships. From these reasons, the gCSP tool requires explicit 
grouping. 

 
Figure 2-11 Resolving ambiguity (adapted from (Hilderink, 2005a)) 

Normally, grouping is explicitly defined by using explicit grouping symbols. CSP 
construct borders are most naturally visualized using a rectangle around the group 
of processes (so-called box notation) as depicted in Figure 2-12 b) for the CSP 
expression P;(Q || R)  from Figure 2-11 b).  

.  

Figure 2-12 Grouping in GML models (parenthesis and box notations) 

The preferred way to specify grouping in GML is using the parenthesis notation, 
as in Figure 2-12 a). This notation relies on specifying indexed bubbles on the ends 
of binary relationships. The parenthesis notation is in fact a more compact 
representation of the box notation. Wherever a box crosses a binary relationship, 
instead of the box, a bubble is drawn (or if it already exists its index is 
incremented) on the side of the relationship that belongs to the internal area of the 
box. The index of a bubble is the number of such boxes crossing the relationship 
on that place. In fact, this way to visualize grouping is similar to the way 
parentheses are used in CSP expressions. A bubble is always placed on the side of 
the compositional relationship next to the process that is considered to be inside the 
parenthesis.  

When processes are grouped into a construct, this construct can actually be 
considered as a new process that inherits compositional relationships of all 
subprocesses with other processes from its environment.  Inheriting two different 
types of relationships to the same outer process indicates that the attempted design 
is illegal. 

A disadvantage of the preferred parenthesis notation is that for the untrained eye it 
is quite difficult to spot borders of the constructs. Regardless of the chosen 
grouping notation, using binary relationships makes reconstruction of the exact 
control flow difficult, especially in complex examples. 
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The gCSP tool introduces an additional view that gives more insight in the way 
grouping is resolving the set of processes related via binary relationships into the 
tree-like hierarchy (Jovanovic et al., 2004). 

A GML design is in fact a single diagram that can be split into several hierarchical 
views by collapsing/hiding parts of the hierarchy in separate views. It is however 
not envisioned that the same component participates in several views focused on 
different aspects of the system, as is the case for instance in UML models.  

A GML modeling is a free-choice combination of deep and flat hierarchy 
grouping. Flat hierarchy modeling represents several compositional levels in the 
same view and signifies grouping via bubbles on relationship ends. Deep hierarchy 
modeling means that borders of the groups are made clear by either a rectangle 
around it (box notation) or hiding submodels in separate views (containment 
hierarchy).  

Recursion 

Recursion in CSP has a meaning of jump to the place in control flow marked with 
the process name used in recursion. Occam, CT and GML lack ways to express 
recursion in ways other then repeating the same part of behavior in a loop (WHILE 
construct in occam and loop control blocks of native programming languages in 
CT library). Special GML symbols for loops are displayed in Figure 2-13. 

 
Figure 2-13  Control loop symbols in GML 

CSP recursion is for instance used to split FSM-like designs on several process 
descriptions. The lack of similar concept in GML is one of the reasons that GML is 
not suitable for making FSM-like diagrams.  

Representing FSM-like designs 

Simple CSP processes, made out only of event synchronization points connected 
via the prefix and the guarded alternative operator, are often visualized using a 
Finite State Machine (FSM). Every node in such FSM represents a state of the 
process and every edge/transition is associated with some event.  

Alternative binary relationships are grouped in ALT constructs, and as in occam 
and CT library, such a construct requires a common join point and is thus not 
suitable for FSM-like designs. A CSP expression is visualized naturally via FSM 
approach, as depicted in Figure 2-7. In GML it can be represented for instance 
relying on the design pattern for coding FSM-like designs in occam-like 
approaches described in section 2.1.5.  
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If in Figure 2-14 the variable state is set to the value equal to one, the transitions 
associated with events ‘ev1’ and ’ev2’ are allowed (note in FSM given in Figure 
2-7 that the transitions associated with events ‘ev1’ and ‘ev2’ lead from the state 
marked with 1). The occurrence of event ‘ev1’ updates the value of the variable 
state to the value 3 and the body of the process ‘from state S1 to S3’ is executed. 
In the next iteration, since the value of the variable state is equal to three, only the 
event ‘ev3’ is allowed. Figure 2-14 illustrates that this approach results in a rather 
unreadable diagram. The size of diagram in fact scales with number of transitions 
instead of with number of states.  

 

 
Figure 2-14 The FSM visualized in GML 

GML was designed for adding the concurrency structure to existing data flow 
diagrams and not for FSM kind of designs. The conclusion here is that GML is not 
suitable for this purpose. The recommendation is to envision other ways to capture 
FSM-like designs in CSP manner. 

Priorities 

GML provides symbols for the prioritized versions of binary parallel and 
alternative compositional relationships. In this way, a relative priority ordering can 
be specified between any two processes. As a result, the related processes will have 
common prioritized construct of appropriate type located somewhere upwards in 
the hierarchy of parent processes. A tool can check whether the priority 
specification is conflict-free. 

Symbols for priority ordering are created by adorning existing symbols of parallel 
and alternative relationship with an arrow directed towards the process of higher 
priority.   
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Exceptions 

GML defines the exception relationship based on the concept similar to the 
interrupt operator of CSP. In Figure 2-15, the process P is guarded for exception 
and process Q handles the exception. 

 
Figure 2-15 Exception compositional relationship in GML 

In the CT library implementation, the binary exceptional relationship is replaced 
with an exceptional construct containing both processes P and Q. The 
process Q is an exception handler. After an exception is thrown by process P, 
it will be caught by the associated exception construct and forwarded to the 
exception handler Q.  It is possible to specify a chain of exception handlers. 

Design process 

In GML, the recommended design process starts with process blocks existing in 
isolation. The first design step is making the communication structure as a standard 
data flow model. Next, the concurrency structure is added to this model by 
specifying binary compositional relationships between involved processes. Some 
relationships are known in advance and some are subject to various trade-offs. For 
instance, instead of specifying immediately that there is a parallel composition of 
processes A, B and C, one might first conclude that processes A and B should be 
executed in parallel. Only after the same type of relationship is made between for 
instance B and C, it becomes possible to group A, B and C into one parallel 
construct.  

Data-flow orientation 

GML is a convenient method for resolving the concurrency structure of the data 
flow diagram without changing the existing layout of the original data-flow model.   

Let us consider an example of a control task that can be further decomposed into a 
hierarchy of models related in a precedence constraints diagram as given in Figure 
2-16. The origin of the specified precedence relations is in the data flow between 
submodels.  

In GML, given data flow block scheme can be refined by adding compositional 
relationships – e.g. sequential relationships with non-synchronized data passing in 
between (var-channels) or parallel relationships with rendezvous synchronized 
channels in between. E.g. the data flow model given most left on the Figure 2-16 
can for instance be implemented as (P1;P3;P5) || (P2;P4;P6 ) (see the middle 
diagram in Figure 2-16).  

As a consequence of chosen compositional relationships some data channels are of 
the rendezvous type (pairs (P2,P3), (P3, P4) and (P5,P6) in Figure 2-16 ) and some 
are var-channels as illustrated on final version of communication diagram 
(depicted most right on Figure 2-16).  
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Figure 2-16 Refining data flow model to compositional and communication view 

Comparing communication and compositional view on Figure 2-16, one can come 
to the conclusion that they are not completely independent because the same 
information is encoded in both views. Var-channels indicate sequential 
relationships and rendezvous channels indicate parallel relationships. However, 
note that the communication view is in the general case not enough to reconstruct 
the compositional view, since parallel and sequential relationships might exist 
where channels are not present and there might be alternative relationships that do 
not allow any kind of channels between related processes. In addition, the 
existence of some compositional relationships, without the complete specification 
or explicit grouping symbols, does not say enough about their grouping into a 
hierarchy of constructs. 

GML visualization of a model easily becomes overcrowded with data and thus 
hardly readable. This is especially the case when both communication and 
compositional models, as carrying together the complete information of the system, 
are depicted simultaneously. To illustrate this, on Figure 2-17 the hybrid view, 
containing both communication and compositional views from Figure 2-16, is 
depicted. 

 
Figure 2-17 Hybrid view 
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2.2.4 Discussion 

While the CT library is adopting an occam-like viewpoint, GML is positioned 
somewhere in between CSP and occam viewpoints. GML is a description language 
that aims to allow significant design freedom needed in early stages of the design 
trajectory and to allow easy transition to a final stage where the model is shaped as 
an occam-like tree hierarchy. Design freedom is based on relying on specification 
of binary compositional relationships between process blocks. This is done in order 
to: specify relative compositional relationship between two processes in the 
isolation from the rest of the system, allow compositional ambiguity during the 
design process and in that way postpone design decisions about exact concurrency 
structure. Final models, shaped as occam-like hierarchies, allow a choice of code 
generation based on primitives from the CT library or occam.  

Allowing one to, instead of immediately specifying constructs, make explicit 
binary relationships (sequential, parallel, alternative) between any two processes 
offers a high flexibility during the design process. GML models can express 
designs that are illegal or underspecified or ambiguous. Compared to a making an 
occam-like tree-hierarchy directly, GML models seem to be much better suited as a 
design entering view. Still, design freedom comes with a price that the 
specification should not be illegal or ambiguous in order for code generation to be  
possible. 

As illustrated in Figure 2-16, refining the data flow model with compositional 
relationships expressing the concurrency structure can be done without changing 
the 2D layout of the original data-flow model.  This feature makes a prospective 
tool based on GML suitable for application in a chain of tools, with the preceding 
tool in the chain producing a data flow model e.g. based on some application-
specific domain.  In our research group focus is on development of control systems 
and a possible predecessor to a GML-based tool is 20SIM, a tool for modeling and 
simulation of control systems based on bond graphs and control theory.  

In fact, one can state that the data flow orientation of GML makes it not suitable 
for FSM-like designs that are essentially specifying control flow. In control 
systems application area, control loop internals is convenient to represent in a data 
flow model and event based supervisory and sequence control processes are better 
visualized in the control flow based FSM-like approach. Thus, both control flow 
and data flow oriented views are needed to visualize concurrency in control 
systems.  

Compared to CSP as its source, GML suffers from the similar expressiveness 
deficiencies as CT libraries and occam. The internal choice is missing, recursion is 
possible only in a form of loop constructs, and the external choice is possible only 
in the shape of Alternative construct of CT and occam. The control flow element 
for conditional branching (IF) of control flow is also missing. As in occam/CT, a 
finite-state-machine-like behavior is not straightforward to express. In fact, a good 
idea would be to extend GML with a different view that can capture finite state 
machines. A simple way to do that would be a table layout approach as the one in 
i-MathicStudio. 
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GML considers that the communication view (data flow expressed via rendezvous 
and var channels) and the compositional view (set of binary compositional 
relationships among process blocks) are orthogonal. However, as illustrated in the 
example of Figure 2-16, this is not completely true since the presence of 
rendezvous channel communication (equivalent to a CSP event) implies a parallel 
compositional relationship and var-channels imply either sequential or parent-
child relationship. 

Perhaps the biggest disadvantage of GML is that relying on binary relationships 
does not scale well with complexity. Using bubbles as a way of grouping reduces 
the number of binary relationships that needs to be specified and is more compact 
then the box notation. However, it leads to somewhat reduced readability, at least 
for untrained eyes. This is especially the case in hybrid diagrams, depicting in the 
same time both compositional and communication view as in Figure 2-17. 
Consequently, GML makes the representation of complex designs visually 
cluttered, instead of making it simple and intuitive. It is hard to envision GML-like 
diagrams without external media like paper or a computer screen.  

A GML design is intended to be one diagram/graph, whose compositional / 
containment hierarchy structure can be either fully exploded to show everything in 
a single view, or internals of some processes/constructs can be hidden on the 
current abstraction level and be depicted in a separate view. In other words, in 
GML and gCSP it is not envisioned that same element can exist in different views. 
Different views are thus related exclusively via the containment hierarchy. It is not 
envisioned to focus on one part or aspect of behavior of some entity in one 
diagram/view and on another aspect of the same element in another diagram/view, 
as is possible in UML. 

GML relies on CSP formal checkers for checking consistency of designs whose 
compositional structure is not illegal or ambiguous. Before the code generation to 
CSPm scripts is possible, ambigouities in designs need to be resolved. The gCSP 
tool does this by enforcing explicit grouping and using knowledge of the grouping 
action to keep track of growing sub-trees in tree-hierarchy of constructs and user-
defined processes. When all binary relationships are resolved in constructs placed 
somewhere in the tree-hierarchy and all processes except the top-level process 
have a parent construct, the design is ready for the next stages: formal checking 
and source code generation. 

2.3 Component engineering practice 
CSP allows one to structure concurrency in a compositional way, with focus on the 
interaction between components. However, a component in the CSP sense of the 
word is something different from a component in the modern sense of the word. 
Normally, a component is reusable structural unit that has an identity.  CSP basic 
components are processes, which are more behavioral than structural units. A CSP 
process can though specify the way in which some structural unit, e.g. a component 
will behave in its interaction with other components in its environment. This 
interaction is viewed only via the event synchronization pattern describing the 
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behavior of the component on its interface. The same structural unit can in fact 
exhibit different behavior on different interfaces. 

CSP has a potential for describing the interactions between components. Occam, 
CT and GML however miss to use the capabilities of CSP for component-based 
software engineering. They do use processes as components with channels playing 
the role of ports. However, they do not keep up with modern notions of 
component-based design.  

An Architecture description language (ADL) expresses system 
(software/hardware) architectures using terms as ports, components, connectors. 
Some ADL (e.g. MetaH (Honeywell, 2007)) also include specification of 
additional properties like execution time and failure modes.  

In (Crnkovic and Larsson, 2002), basic notions of component-based development 
are defined as follows. “A component is a reusable unit of deployment and 
composition that is accessed through an interface. An interface specifies the access 
points to a component. The component specification can be achieved through 
contracts, which make sure certain conditions hold true during the execution of a 
component within its environment. A framework describes a large unit of design 
with defined relationships between participants of the framework. The last term 
discussed is patterns, which define recurring solutions to recurring problems on a 
higher level of abstraction. Patterns enable the reuse of the logical solutions and 
have proven to be very useful. “ 

It is further stated that, due to the requirement of integration of a component into 
an application, the most important feature of a component is the separation of its 
interfaces from its implementation. Component integration and deployment is 
completely  independent of the component development life cycle and there should 
be no need to recompile or relink the application when updating with a new 
component.  

2.3.1 Component frameworks 

Many component frameworks do exist. Here we chose to focus attention on the 
few most interesting regarding the needs of this project for adding support for basic 
component based development on top of the CSP-based design specification 
notation. 

COM / DCOM / MTS / COM+ (Eddon and Eddon, 1998) is a stream of subsequent 
Microsoft component frameworks, with each one keeping backwards compatibility 
with previous ones. DCOM extends COM with distribution, and MTS extends 
DCOM with persistency and transaction services. A COM object comes in binary 
code, which is a way to avoid recompiling and relinking and to allow plug-and-
play integration of components. All interfaces inherit from the IUnknown interface, 
which contains functions to dynamically discover the type of interface of the 
addressed COM object and to maintain the existence of a COM object via 
obtaining/releasing references to it. 
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 The Koala (van Ommering, 2004) component model is used by Philips to create 
product line architectures for consumer electronic products. As in COM, a Koala 
interface is a set of functions. Connections between components are possible in the 
form of direct binding of provided and required interfaces, in the form of the glue 
module and the switch connector. The glue module is used, for instance, when two 
interfaces do not exactly fit. In the glue module it is possible to add glue code or fit 
parts of several different interfaces as a replacement for a single one supporting all 
those features. Koala defines a custom expression language for specifying glue 
code. 

 
Figure 2-18 An example (van Ommering, 2004) of system specified in Koala 

Switch connector is an example of a glue module, but it is used so often that it has 
a separate symbol. Switch connector is used to switch binding between 
components.  In addition, Koala components can be parameterized through 
diversity interfaces – those are just required interfaces marked with the ‘div’ label, 
that needs to be binded to some other component that can provide the values for 
those parameters.  

In UML2, components are adorned with a special symbol (see upper right corner of 
component1 in Figure 2-19).  

 
Figure 2-19 Ports, provided and required interfaces  in UML2 

Optionally, components can have a compartment with contained classes (Class1 
and Class2 in component1 in Figure 2-19). Port is an access point to a component 
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or a complex class. It is visualized as a small square on the top of the border of a 
component/class (e.g. see port21 and port22 in Figure 2-19). Port is associated with 
one or more interfaces. Two types of interface exist: provided interface and  
required interface (see Figure 2-19). In addition, port may be connected to inner 
part that provides/requires implementation of the interface (e.g. see relation 
between comp21 and port21 in Figure 2-19). 

The ACME Architecture Description Language (ADL) (Garlan et al., 2000) 
defines components, ports, connectors and roles. The structure of a system is 
specified by a set of components, a set of connectors, and a set of attachments. An 
attachment links a component port to a connector role. Introduction of connectors 
allows one to reason about them in isolation. A component can internally contain 
other components and a set of bindings (links from an internal port to an external 
port).  

WRIGHT (Allen, 1997) is an Architecture Description Language (ADL) that relies 
on CSP to describe the architecture of software systems. Basic abstractions of 
WRIGHT are: components, connectors and configurations. A component consists 
of two parts: a computation and an interface. The interface consists of ports. Each 
port is an interaction in which the component can participate. The use of ports is to 
allow consistency checking and to guide programmers in the use of the associated 
component. WRIGHT is a textual way to describe architectures. No visual notation 
exists. However, ACME studio (Schmerl and Garlan, 2004), an editing 
environment and visualization tool for software architectural designs based on the 
Acme, does provide space for specifying protocols using text-based syntax of 
Wright. The accompanying Wright toolset can translate Wright-annotated Acme 
description into Wright, parse the software architectures defined using the Wright 
ADL and translate them into machine readable CSP (for use with a formal model 
checker – e.g. FDR) and Acme ADL.  

2.3.2 Interaction management – the notion of 
contracts and connectors 

Component-based software engineering is in practice most often based on the 
client-server architecture model, where one component (server) provides a certain 
service and the other component (client) uses that service. In some application 
areas, typical generic patterns are captured in the shape of standardized and 
precisely defined client side and server side interfaces (e.g. OPC (2007)). This 
allows system integration based on components supplied by different vendors. 
Integration efforts are minimized as long as the used components adhere to these 
prescribed interfaces.   

In a client-server system, the contract specifying interaction scenarios and 
adjustable parameters of service delivery is implicit and partially reflected in the 
interface definitions of the provided and required services. Sometimes those 
interfaces also offer services for negotiating contract parameters.  
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Making an explicit entity that implements such a contract is considered to be 
unwanted overhead. The client/server approach is justified for data processing 
systems with clearly directed data flows. Data flows are in such systems starting 
with a client’s request to the service provider, which can, in order to provide its 
service, further delegate part of its task to some other service provider(s) and in 
that way act as a client of the next component(s) in the client/server chain/tree. The 
obtained results travel in the opposite direction.  

Complex client/server systems may however require existence of components that 
provide the management of interaction between several involved components. 
Components managing interaction of other components are in fact specifying and 
implementing explicit contracts governing interaction. For instance, a typical case 
would be providing, for fault tolerance reasons, redundancy in the form of 
replicated server components and an additional component/contract governing the 
interaction of the involved components. 

Sometimes, e.g. in complex control applications, interaction between components 
is not natural to structure as a chain or tree of clients and servers. For instance, 
devices in an industrial production cell system need to cooperate as peers in order 
to provide a result. Every participating device has a precisely defined role, but it is 
not always clear what is the service, and if some component is in that interaction 
playing the role of a server or of a client. Instead, interaction between components 
is an interaction of peers that work together to achieve some higher-level behavior.  
In those situations, a structured approach is to introduce entities that will manage 
and supervise interactions between components. Such an entity is in fact defining 
an explicit contract between the involved components. 

In Wright (Allen, 1997), the connector specifies the interaction between a set of 
components.  It does that by providing the description of Roles representing 
expected behavior of participants and the Glue representing the specification on 
how the participating roles cooperate in the scope of the interaction managed by 
the connector.  A Configuration is a set of component instances combined via 
connectors. 

In (Zorzo et al., 1999), Coordinating Atomic Actions are introduced as a way to 
structure safety-critical systems involving complex concurrent activities. A 
coordinated atomic action (CA action) is an entity in which two or more threads of 
control implementing the roles of the participating components meet and 
synchronize their activities performing atomically a set of operations on a set of 
objects belonging to the CA action entity. In this way, a CA action behaves as a 
transaction and represents a general framework for dealing with faults and 
providing ways of recovery. Obviously, a CA action managing interaction contains 
more information needed for handling composite exceptional occurrences than any 
of the participating components in isolation. This makes CA actions a structured 
design pattern convenient for usage in safety-critical systems. The CA action 
design pattern is in (Zorzo et al., 1999) illustrated on a model of the  Production 
Cell case study. 

In (Boosten, 2003), a formal contract is introduced as a design pattern that 
manages interaction among components in a side-effect-free way. A formal 
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contract is implemented as a state machine that codes interaction between 
components relying on a system of asynchronous modification requests from 
components to contract and state change notifications from contract to 
components. The contract is promoted as an interaction entity that should substitute 
occam/CSP channels, since its ability to capture a complete N-directional 
specification of interactions between involved components makes it superior to 
channels usage. It is suggested that it is possible to transform a formal contract, 
being a state machine, into a CSP specification allowing in that way formal 
checking of the interaction patterns managed by contracts. The usage of such a 
formal contract is foreseen as a support useful during the full development cycle. 
The paper reports that usage of formal contracts in a real-life software problem 
resulted in a significant reduction of complexity and elimination of some typical 
problems related to the unstructured use of concurrency. 

In (Beugnard et al., 1999), making components contract aware is argued in order to 
be able to trust components employed in mission-critical applications. This paper 
deals with client-server architectures and identifies four levels of increasingly 
negotiable properties in the contract specification.  

On the basic (syntactic) level¸ there is the interface description language (IDL)–
like description of contract properties. This includes services/operations a 
component can provide/perform, associated input and output parameters and 
possible exceptions that may be raised during operation. Component frameworks 
that support (only) first-level contracts are, for instance: CORBA, Component 
Object Model (COM), JavaBeans.  

Level 2 contracts are behavioral contracts. These contracts offer the possibility to 
specify pre-conditions, post-conditions and invariants for the performed operations. 
Typical examples of level 2 contracts are “design by contract” in the Eiffel 
language (Meyer, 1992; Nienaltowski and Meyer, 2006) and Object Constraint 
Language (OCL) of UML.  

Level 3 are synchronization contracts. Contracts on this level specify behavior in 
terms of synchronizations and concurrency, e.g. whether a dependency between 
provided services is parallelism, sequence, shuffle, etc. The Service Object 
Synchronization (SOS) mechanism is an example for contracts on this level. 

Finally, level 4 contracts allow dynamic adaptation of the contract based on 
Quality of Service (QoS) requirements. TAO (the adaptive communication 
environment object request broker) is an example for a level 4 contract.  

Although the “four level” classification of contracts was introduced for implicit 
contracts of the client-server architecture, the classification is still a useful way to 
define more precisely the position of explicit notion of a contract. 

2.3.3 Discussion 

Component-based frameworks in general lack the structured way of handling 
concurrency. Wright ADL does handle that issue, but there is no visualization of 
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the concurrent behavior. The design methodology aiming to reduce complexity of 
the design process does need a support for component-based development. This 
include ways to specify components as structural units of deployment and 
composition, ease of dynamic reconfiguration, interface management system, and 
interaction management via some kind of a formal interaction contract. Visual 
notation should, as a minimum, provide ways to specify components, ports and  
provided and required interfaces. Some notion of interaction contract would help to 
specify interactions in more structured way. 

2.4 Conclusions 
This chapter illustrated that in the current state of the art, there is a considerable 
gap that can be filled with combination of several complementing aspects.  CSP is 
a theory that allows creating relevant models focused on interaction in concurrent 
systems and allows formal checking. The programming language implementations 
of CSP that exist in practice are not only subsets of it, but also introduce a 
somewhat different way of thinking.  

CSP formulas are hard to follow and proper visualization could make the CSP 
designs more readable and more applicable in practice. GML attempts to achieve 
this, but is geared towards an occam-like approach and is based on the idea of 
extending existing data flow diagrams with binary compositional relationships. 
However, this results in reduced readability of the control flow and is often a less 
suitable way to visualize designs than the introduction of simple control flow 
elements.  

Finally, component-based frameworks in general lack structured ways to capture 
interaction on their interfaces. Even when this is taken care of, visualization of 
specified interaction is missing, which makes this way of design less attractive to a 
prospective software designer. 
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3 SystemCSP  
Absorb what is useful, discard what is useless, and add what is 
essentially your own. 

    Bruce Lee 

This chapter introduces the SystemCSP – a new graphical design specification 
language aimed to serve as a basis for the specification of formally verifiable 
component-based designs of distributed real-time systems.  

SystemCSP is based on the principles of both component-based design and CSP 
process algebra. Such a combination promises to offer a more structured approach 
and more expressiveness than the one offered by the occam-like approach targeted 
in GML. 

GML is geared towards producing occam-like programs. It provides a lot of design 
freedom in early stages of design by relying on idea to relate processes via binary 
compositional relationships instead of starting immediately with occam-like 
constructs. However, experiences with GML lead to the conclusion that although 
binary relationships are useful in early stages of design, they tend to clutter 
readability of even relatively simple diagrams. 

With SystemCSP, we attempt to make a paradigm shift from occam towards CSP. 
CSP offers more expressiveness for specifying concurrent systems then its occam 
related subset.  Instead of relying solely on binary relationships as in GML, 
SystemCSP tries to make a trade-off between the need for design freedom in early 
stages of the design process and the need for providing readability of control flow 
in late stages of the design process. 

Graphical elements introduced in SystemCSP are related to basic elements of the 
CSP process algebra. In this way, designs have immediate mapping to CSP 
expressions. A CSP description can also be mapped to an appropriate graphical 
representation in SystemCSP.  

Section 3.1  deals with symbols used for basic elements. Section 3.2 puts focus on 
the specification of behavior in CSP-based, control flow oriented, manner. Section 
3.3 deals with ways to specify interaction between components. Section 3.4 
presents ways to specify basic structural units – components. Interactions are 
specified in separate views (interaction views) centered around interaction 
contracts. Participating components are related via binary compositional 
relationships. Section 3.5 illustrates a way to visualize the distribution of 
components (belonging to the same interaction) to different nodes. Section 3.6  
deals with a comparison to some other approaches for visualizing software models. 
Section 3.7 specifies the position of SystemCSP diagrams in a more broad 
development process. Section 3.8 deals with implementation issues.  At the end in 
section 3.9 some conclusions are given. 
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3.1 Basic elements 
In SystemCSP, behavior is visualized using diagrams whose basic elements are: 
event-ends, event prefix operator, process labels, process blocks. 

3.1.1 Events 

Event-ends 

Basic event-ends are: START, EXIT, STOP, EventSync, Writer, Reader, and 
EventAccept (Figure 3-1).  

 
Figure 3-1 Basic elements 

The existence of a start event is implicitly assumed in CSP, but is not written down 
in CSP expressions. In the visual notation, however, it is very useful to mark the 
entry point of a process or a component. The START element is marking the entry 
point of a component.  

The EXIT element is a point of successful termination It is equivalent to the SKIP 
process in CSP. The name EXIT is chosen because compared to the name SKIP, it 
reflects better the intended purpose of the element.  

STOP is, as in CSP, the process that does not engage in any event.  

EventSync is an elementary process playing the role of event-end. It participates in 
event synchronization with one or more peer EventSync elementary processes 
executing in parallel.  An event takes place when all participating EventSync 
processes are ready (rendezvous synchronization).  

An EventSync can in general initiate or accept events. The difference is not 
important from the CSP point of view, but sometimes in designs, it is handy to 
know which side initiates the interaction. For a side that can only accept 
interaction, the EventAccept symbol is used.  

The two other special kinds of EventSync symbols are Writer and Reader symbols 
that emphasize the direction of unidirectional communication associated with an 
event occurrence. The Writer and Reader basic processes are alike to channels in 
the occam approach.  

EventSync processes usually have associated an event label that specifies the event 
name and the details of the related data communication, if any.  
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Event prefix  

As the event prefix operator of CSP, the event prefix (abbreviated prefix in further 
text) is in SystemCSP shaped as an arrow (see left-hand side of Figure 3-2). As in 
CSP, it is used to specify the sequential order between an event and the rest of the 
process executed afterwards. A prefix can lead to some other diagram node 
element – e.g. to an event end.  

 
Figure 3-2  Event prefix 

At right-hand side of Figure 3-2, the first event prefix element relates event ‘a’ to 
the process expression starting with event ‘b’, and the second event prefix element 
relates event ‘b’ with the EXIT element. Thus, the specified process will 
participate in event ‘a’, than participate in event ‘b’ and successfully terminate. 

3.1.2 Processes  

Process labels 

A CSP process is essentially a named entry point in some control flow. In 
SystemCSP, process labels (see Figure 3-3) are used to visualize process entry and 
recursion points. Thus, a distinction is made between a process entry label and a 
process recursion label. A process entry label represents the entry point of a 
process, and is attached via a prefix operator to an element of a SystemCSP 
diagram (with the exception of a prefix operator).  A prefix leading to a process 
recursion label means that after the prefix operator, the process will continue 
behaving in a way as defined by the process entry label carrying the same name. 
This combination of process entry labels and process recursion labels allows 
natural visualization of recursions. In Figure 3-3, process P1 will first initiate event 
‘a’, than wait for event ‘b’ and subsequently behave as process P2.  

 
Figure 3-3 Process labels 

Instead of using process recursion labels one can directly draw prefix arrows to 
entry points of appropriate processes (provided they are in the same view). 
However, using the process recursion labels makes diagrams more readable.  
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Interacting processes 

Figure 3-4 illustrates how the previously introduced elements can be combined for 
describing three processes that interact by synchronizing on certain events. Process 
entry points are marked with process entry labels carrying names P1, P2 and P3.  

 
Figure 3-4  Combining basic processes with prefix control flow elements 

In case data communication is present, the event label contains, in addition to the 
event name (‘ev1’, ‘activate_P3’ and ‘ev2’ in Figure 3-4), the description of the 
data communication. Signs “?” (read) and “!” (write) are representing the direction 
of the communication. The names following the “?” or the “!” signs represent the 
local variables used as destination (e.g. variable q in ev2?q event label in Figure 
3-4),  or source variables (e.g. variable r in ev2!r event label in Figure 3-4). As 
the source of data, it is possible to use an expression involving multiple variables, 
or a function that evaluates to a value of an appropriate data type. One event 
occurrence can have multiple data communications associated (e.g. ev1?x!y in 
Figure 3-4). 

Note that in case of event ‘ev1’, either process P1 or process P2 can initiate the 
interaction, and that when both processes are ready to perform the event 
(rendezvous synchronization), the associated data communication will take place in 
both directions. The value of variable w of process P2 will be written into the 
variable x of the process P1 and the value of variable y from the process P1 will 
be written into the variable z of the process P2.  

Event ‘activate_P3’ is initiated by process P1, and accepted by process P3.  This 
event has no associated data communication. 
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 In the third interaction (event ‘ev2’), focus is on emphasizing the direction of 
unidirectional data communication. Therefore, the basic processes Writer and 
Reader are used. Rendezvous synchronization is implied and it is not considered 
important which side initiates the interaction. 

Interaction between two processes is represented via a dashed line. This line 
connects a pair of peer event-end synchronization points (EventSync elements) 
located inside those processes (e.g. ‘ev1’ event-end in process P1 with ‘ev1’ event-
end in process P2 in Figure 3-4). Dashed lines are an intuitively good choice 
because a dashed line indicates discontinuity and the EventSync processes are 
points of discontinuity in the control flow of a process. Prefix arrows are, for 
instance, solid, directed lines because they do indicate that, between the points they 
connect, the control flow is not interrupted by interaction with the environment.  

Process blocks  

A Process block is a process separated from its environment via a rectangle box. 
Since a process is in CSP a named entry point in the behavior specification, not 
every process can be depicted as a process block.  

Processes or process parts can be visualized with their internals exposed 
(transparent-box approach as used for processes Q2 and Q3 in Figure 3-5) or 
hidden (opaque-box approach as used for the instance q1 of process Q1 in Figure 
3-5).  

 
Figure 3-5 Process specification 

The label carrying the name of a process is in case of the opaque-box approach 
depicted inside the process block. In case of the transparent-box approach, it is 
associated via a line to the process block. 

A process block needs to have a single entry point. This entry point is marked 
either with the START event (as for process Q2 in Figure 3-5) or via a process 
entry label (as for process Q3 in Figure 3-5). 

A process block can represent either a type definition or an instance of some type. 
Process types are abstractions that can be reused and instantiated in any context. 
Instances of processes can be named or not.  When an instance is named, the 
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naming notation takes the form instanceName:TypeName (in Figure 3-5, q1 is 
an instance of a process of type Q1). If left unspecified, a process name is assumed 
to represent an abstract type or a nameless instance of a named type (e.g. nameless 
instance of process Q2 in Figure 3-5), depending on the context of its usage. 

The rectangle box representing a process can have visualized a set of events 
exported to the environment in the shape of event port labels (e.g. event ‘b’ offered 
to the environment by instance q1 of process Q1 in Figure 3-5). An Event port 
label contains inside curly braces a name of an event or names of a set of events 
participating in the specified interaction.  This label is associated with a point on 
the outer side of the process block rectangle. Explicit specification of event port 
labels is often omitted e.g. when the interaction line crossing the border of the 
process block makes its participants obvious (e.g. event ‘a’ in Figure 3-5) or when 
it is not considered crucial to visualize event names.  

Non-interacting process blocks 

Non-interacting process blocks are process blocks that do not interact with their 
environment. Internally, however they can contain any number of interacting 
subprocesses and EventSync processes. A special kind of non-interacting process 
block is a code block, which contains only pure computation code.  

 
Figure 3-6  Non-interacting processes 

A non-interacting process is not relevant for the CSP model at the level of 
abstraction where it is invoked and can thus be omitted in the resulting CSP 
description. Non-interacting processes are in SystemCSP specified in one of the 
ways depicted in Figure 3-6. The first three symbols visualize non-interacting 
process block descriptions like a rectangle box, isolated from the interaction with 
the environment via walls on the sides lateral to the control flow. The types of 
description illustrated in Figure 3-6 are respectively: a textual description or the 
name of the action or the scenario it represents, a detailed description of internals, 
or a sequence of functions invoked. Using a brief textual description is especially 
useful in early stages of the design process, e.g. while specifying in abstract way 
the behavior of use-case elements in use-case scenarios (see Figure 3-35 for 
example). The fourth example illustrates that in case of a code block, it is allowed 
to skip the box element, and associate the description directly with the prefix 
operator. This is, for instance, convenient in order to reduce number of displayed 
blocks when the code block is not so relevant for understanding the diagram. 

Another issue is that often one needs only to set/reset some flag variable(s) or set 
the value of a variable that maintains the current state in the control flow. 
Specifying a code block using a rectangle is in such cases a bit of overkill. That is 
why the concept of action block is introduced. It is a small code block restricted to 
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setting/ resetting the value of flag variables and/or updating the state variables. An 
action block specified inside curly braces and a special notation is introduced to 
abbreviate setting (the symbol “/” that reminds visually on raising the value of 
signal) and resetting (the symbol “\” that visually resembles on falling value of 
signal) variables. An action block is always associated with some prefix arrow. It 
can, however (as in Figure 3-6), be visualized as associated with an event-end. In 
that case, in fact it is associated with prefix arrow that origins in that event-end. In 
Figure 3-6, immediately after the occurrence of event ‘ev1’, flag variable flag1 is 
set and flag 2 is reset. The need for the action block elements was realized during 
the work on designing the software for the study cased described in chapter 6. 

3.1.3 Comments 

 
Figure 3-7 Comment block 

The shape of the comment block (see Figure 3-7) is deliberately cloud-like, 
because in that way it is completely different from other elements of diagram and it 
is easy to visually separate it from the rest of the design. Besides, a cloud is a 
symbol intuitively related to comments, thoughts and ideas. A comment block is 
intended primarily for short comments and keywords indicating the contents of an 
actual comment. A prospective tool is expected to offer a place for detailed 
description in an element property viewer e.g. located below the design editor area. 
When a comment block is selected in the design editor, its property field would 
display the complete comment.  

3.2 Control-flow oriented elements 

3.2.1 Elements related to CSP operators 

Hiding and Renaming Operators 

The hiding and renaming operators are applied to a process and the result is again a 
process. For this reason, in SystemCSP, those two operators are visualized using a 
rectangle element that relates the process entry point of the resulting process with 
the entry point of the (named or nameless) process used as the operand.   

The environment of some process does not know its CSP description; it sees only 
the set of offered (ready) events. In CSP, the hiding operator is applied in the form: 
newProcessName = oldProcessName \ {set of hidden events}. The result 
is hiding the chosen set of events from the environment. In SystemCSP, the part of 
this specification containing the hiding operator and the set of hidden events is 
specified inside a rectangle box that relates entry points of the new and the old 
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process. In Figure 3-8, the hiding operator is applied on process SWITCH in order 
to hide event ‘off’ from the environment and to offer the resulting process under 
the name TURN_ON. The TURN_ON process can offer to its environment only 
the event ‘on’. 

 
Figure 3-8  Example illustrating the usage of the renaming operator 

The renaming operator of CSP replaces all occurrences of event/process names or 
event/process expressions with some other event/process names or event/process 
expressions. The symbol used in SystemCSP for the renaming operator relies on a 
notation that resembles to multiplying with the ratio of the new and old name 
(expression). This is an intuitively clear way to create the illusion of canceling the 
old expression and replacing it with the new one. Renaming is especially useful in 
situations when a process is reused in a context with a need for different names of 
events. In Figure 3-8 the renaming element specifies that events ‘on’ and ‘off’ are 
renamed into light_on’ and ‘light_off’ respectively. The process created in this way 
is named ELECTRIC_LIGHT_SWITCH. 

Conditional choice  

An IF element (see left-hand side of Figure 3-9) specifies, inside square brackets, a 
boolean expression that represents a condition. It has two prefix arrows leading 
from it: the TRUE and the FALSE paths.  

 
Figure 3-9  Conditional choice elements 

Generalization of the IF control flow element is the SWITCH control flow element 
(see right-hand side of Figure 3-9). Unlike IF element, it can have more then two 
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outgoing prefix arrows, each one with a different constant value associated. In 
CSP, the SWITCH element can always be represented by several nested IF choice 
operators. 

Preconditions and postconditions 

Figure 3-10 displays on the left hand side, the operational semantics related to 
checking preconditions and postconditions, and on the right hand side, the symbol 
used to abbreviate that.  

 
Figure 3-10 Specifying preconditions and postconditions 

Guarded alternative 

The guarded alternative is a process that offers to its relevant environment, a 
choice between several events. The branch starting with the chosen event will be 
followed. In SystemCSP this element (see left-hand side of Figure 3-11) is 
depicted as a rectangle box in which SyncEvent processes (‘ev1’ and ‘ev2 in Figure 
3-11) are half-emerged.  

 
Figure 3-11 Guarded alternative 

From the outer side of the SyncEvent circles, prefix control flow elements lead to 
communication patterns representing the alternative control flow branches. This is 
an intuitive representation of the fact that the guarded events are in same time 
offered to the environment and considered to be part of the operator. 
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The Guarded alternative can be in one of several working modes (prioritized, 
FIFO, FAIR, preference alting). The chosen mode is represented with an 
abbreviation (PRI, FAIR, FIFO, PREF) inside the rectangular box defining the 
operator. When the specification of the mode is omitted, the default mode (FIFO) 
is assumed.  

At right-hand side of Figure 3-11, a counter is specified using an array of processes 
of type COUNT indexed with parameter i. The parameter i is used as the counter 
value. After accepting the ‘inc’ event, the COUNT(i) process will behave as 
COUNT(i+1). After accepting the ‘dec’ event, it behaves as the COUNT(i-1) 
process. The event ‘dec’ is guarded with the logical condition set to allow the 
counter value to be decremented only if the value of i is greater than zero.  

Start and Exit Control Flow Elements 

In CSP, operators like sequential, parallel, external choice and internal choice are 
used to combine two or more processes into a new process. In SystemCSP, control- 
flow elements are introduced to represent those operators.  

The operators and theirs operands are in CSP grouped via parentheses. Every 
process composed via one of the CSP operators has an implicit START event and 
either a termination (EXIT) event or a process recursion label leading to the entry 
point of some other process. In a sequential combination of processes, the EXIT of 
one process is triggering the START of the next one in line. The START event of a 
sequential composition corresponds to the START event of the first element in 
sequence and the EXIT event of the composition corresponds to the EXIT event of 
the last subprocess in sequence. In case of parallel and choice operators, a START 
event is a point of forking control flow to branches and an EXIT event is a point of 
joining control flows of branches. In a parallel combination, all involved processes 
synchronize on both START and EXIT events. In case of a choice, only one branch 
is executed. Instead of using explicit grouping symbols (like parenthesis bubbles or 
boxes in GML), SystemCSP chooses to merge the START and EXIT events of the 
composition with CSP operators, creating in that way an extended set of control-
flow elements as illustrated in Figure 3-12. 

 
Figure 3-12  START and EXIT grouping symbols 

Thus, the pair of open and close parentheses, bounding the scope of a CSP 
operator, can actually be mapped to the pair of control flow elements representing 
the synchronization on START and EXIT events (see Figure 3-12).   
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A special kind of a START grouping symbol is the FORK symbol that branches 
control flow on two or more branches. A special kind of EXIT grouping symbol is 
the JOIN symbol, where control flow branches are joined. Often, but not always a 
FORK element is paired with an appropriate JOIN element. In Figure 3-13, the 
words “FORK symbol” and “JOIN symbol” are used to cover all possible FORK 
and JOIN symbols given in   Figure 3-12.  

 
Figure 3-13  START and EXIT control flow elements 

FORK and JOIN symbols can alternatively be specified in the style depicted in 
Figure 3-14.  The look based on rectangles is more convenient when additional 
details need to be specified (e.g. synchronizing alphabets related to a Parallel 
operator). The look based on lines is more space efficient and resembles more 
FORK/JOIN elements of a UML activity-diagram.  

START SEQ and STOP SEQ elements are in Figure 3-13 represented via rectangle 
boxes with the appropriate symbol inside. However, to abbreviate and compress 
the size of diagrams, it is allowed to omit the rectangle and to associate one or 
more START SEQ and/or STOP SEQ symbols directly with a prefix control flow 
element as in Figure 3-14. 

 
Figure 3-14 STARTand EXIT control flow elements - abbreviated forms 

Comparing the CSP expression and its SystemCSP representation in Figure 3-15, 
one can see that all brackets used to group CSP operators with operands are present 
in symbols associated with control flow elements 

 
Figure 3-15  Grouping in SystemCSP 

Process P1 will perform event ‘ev1’ and then behave as a sequence of process P 
and a process constructed as a sequence of process T and the parallel composition 
of processes Q and R. 
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The same example of a non-negative counter from Figure 3-11 is implemented in 
Figure 3-16 using a FORK choice element instead of a guarded alternative 
element. The only difference compared to the guarded alternative based design, is 
that events offered to the environment (‘inc’ and ‘dec’ events) are not considered a 
part of the control flow element but instead are considered part of branches to 
which the FORK choice control flow elements lead. The guarded alternative of 
CSP is thus in fact a special kind of the external choice operator and can always be 
replaced with a FORK external choice. The opposite is not the case. However, a 
guarded alternative is especially convenient for specifying finite-state-machine 
like designs.  

 
Figure 3-16  Example of a counter based on FORK choice 

The internal choice (symbol given in Figure 3-12) is different from the external 
choice in the sense that it will internally make a choice and offer only the chosen 
branch to the environment. The internal choice is not so useful for implementation, 
but it represents a powerful abstraction mechanism; It is used when one needs to 
specify that some process will in some, unknown way choose one of several 
branches.  

Specifying synchronization alphabet 

The synchronization alphabet is a property of every parallel operator in CSP. It 
defines the set of events on which its subprocesses synchronize. In SystemCSP, the 
synchronization alphabet is a property of the FORK PAR operator. The 
Synchronization alphabet can be visualized inside the rectangle box representing 
the FORK PAR element. It is depicted as a list of events specified inside curly 
brackets.  

It makes sense to visualize the synchronization alphabet in cases where it is 
different than the set of all events common for participating processes and in that 
way significantly affects the expected execution semantics, as in the example given 
in Figure 3-17.  
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Figure 3-17 Specifying synchronization alphabets 

Figure 3-17 represents a complex process named Race. Race is a parallel 
combination of two processes: RaceCtrl managing the race and Runners being 
a parallel composition of two runners participating in the race. Both runners are 
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described via the same process description specifying that they will engage in the 
‘raceStart’ event, and in the events ‘100m’, ‘200m’ and ‘finish’. The FORK PAR 
marked with process entry point named Runners specifies that its subprocesses - 
two runners - actually synchronize among themselves only on the ‘raceStart’ event. 

The ‘raceStart’ event is initiated by the race control mechanism (RaceCtrl 
process). The race control mechanism will on request of the runners deliver them 
the current time on the milestone events ‘100m’, ‘200m’ and ‘finish’. After both 
runners have separately engaged in the event ‘finish’ with the RaceCtrl process, 
the count variable becomes equal to the number of runners and the Race process 
is finished.  

Exception Handling   

Handling exceptional situations that occur during the execution of a process is an 
important issue for well-designed programs. In the software development world, 
the implicit agreement exists that in some way, the part of code or a visual design, 
which specifies/implements handling exceptional situations, should be visually 
isolated as far as possible from the design/code specifying normal execution. In 
general, exceptional situations in some process can be handled by attempting 
recovery within that process (recovery model) or by aborting the process and 
executing some other process instead (termination model). 

 
Figure 3-18  Take-over operator 

CSP defines the interrupt operator that covers the termination model. Process       
P Δi Q is a process that behaves as process P until either P terminates successfully 
or until an event occurs that activates process Q. In the latter case, further 
execution of process P is aborted and process Q is executed instead. Despite its 
name, the semantics of the Δi operator is much closer to the termination model of 
exception handling than to interrupt handling, since it implies aborting the left 
hand-side operand. To avoid terminology confusion, the equivalent of interrupt 
operator is in SystemCSP named take-over operator. The take-over operator is 
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specified with a pair of FORK and JOIN symbols (see  Figure 3-18) branching 
control flow on normal (most left) and on one or more exceptional modes. 

In Figure 3-18, in the first case the process Q can take over process P. The second 
example in Figure 3-18 illustrates the fact that the take-over interrupt is associative 
by definition. Process Q can take over process P. Process R can take over both P 
and Q.   

3.2.2 Supervision elements 

Logging is the activity of collecting data about the changes in values of a certain 
chosen set of variables during some time interval. In tracing, the information 
communicated to the human operator is the current position in execution flow of 
the application. 

 
Figure 3-19 Supervision layer 

In SystemCSP, logging and tracing points are predetermined in the design. In a 
control-flow diagram of SystemCSP, the symbol used for a logging/tracing point (a 
circle with big L for logging, or T for tracing, inside) is associated with a prefix 
arrow as its property. The reason for this is a choice to consider a set of logging 
points to be an optionally visible layer added on top of the design. In the 
implementation, however, prefix arrows do not exist, while logging points are 
inserted into the appropriate location in the execution flow, as defined by the 
position of the related prefix arrow in the design. 

The reason to opt for this kind of logging is predictability. The logging activity is 
considered to be part of the design and all the needed resources (e.g. CPU time, 
memory, network bandwidth and storage capacity) can be preallocated. Placing 
logging points on predefined places in control flow is, compared to logging every 
change of some variable, considered to be more structured and more predictable 
approach, especially in the sense of processing time requirements.  Places to insert 
logging points can be chosen in a way that allows reconstruction of the relevant 
changes of value of a variable.   
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3.2.3 FSM-like diagrams in SystemCSP 

If only events, prefix and guarded alternative elements are used, any CSP process 
can be visualized both via a SystemCSP diagram and an FSM and easily converted 
from one visualization into the other. In the example below, a one-to-one mapping 
between the SystemCSP diagram in Figure 3-20 and the FSM diagram in Figure 
2-7 is obvious. The states of the FSM map to waiting done on events and guarded 
alternative elements in the Figure 3-20. This is illustrated by enumerating states in 
Figure 2-7 and the corresponding EventSync and guarded alternative elements in 
Figure 3-20 with numbers 0 to 7. 

 
Figure 3-20 SystemCSP diagram 

Note that the topology of SystemCSP diagram in Figure 3-20 visually resembles 
the one of the FSM diagram of Figure 2-7. The main paradigm shift is emphasizing 
events instead of states. Events are not shown as transitions (as in the FSM), but as 
EventSync processes. This allows for direct line connections to peers in the 
environment or to ports of the component. Mapping from SystemCSP to CSP is 
more direct then it is the case for an FSM, where such a mapping requires 
distinguishing between states with exactly one outgoing transition and states where 
more then one outgoing transition is present.  

SystemCSP makes a difference between internal and external choice, while FSMs 
imply always the external choice. 

3.2.4 Hiding as a filter of possible interactions 

The example in Figure 3-21  illustrates how the hiding operator is used to hide 
‘install’/’uninstall’ events from the  user that has restricted access rights.  

When the process Program is at its entry point, it is ready to be installed (event 
‘install’). However, the users who can access the program only via the 
Restricted_program_use process entry point cannot engage in that interaction 
with the program.  
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The program is installed (event ‘install’ accepted) by some process from the 
environment that can see the process under name Program and thus can initiate 
‘install’ event. After installation, program is in Start_Menu entry point in its 
control flow, where any user can open the program (‘openProg’ event). A user that 
has no access restrictions can at this point also decide to uninstall the program 
(‘uninstall’ event). If the program is opened (after ‘openProg’ event), then it can be 
used (UseProg entry point in control flow of the program). Using the program 
initially offers two options: closing the program (‘closeProg’ event) or opening 
some document (‘openDoc’ event). Upon opening a document, one can work with 
it (Work entry point in control flow of the program). Working with the document 
includes making choices between several actions: updating the document 
(‘updateDoc’ event) saving the document (‘saveDoc’ event), closing the document 
(‘closeDoc’ event) or closing the entire program (‘closeProg’ event). Note that in 
Figure 3-21, the assumption is that the process selected to be displayed in the 
figure is Restricted_program_use and that because of that, the hidden events 
‘install’ and ‘uninstall’ are shaded.  

 
Figure 3-21 Hiding as a way to filter possible interactions 
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In this example, one can also notice the difference between a process as a structural 
unit and a process as a behavioral unit. Restricted_program_use and 
Program are two different CSP processes in behavioral sense, but both behaviors 
are provided by the same structural instance. Thus, the processes  
Restricted_program_use and Program need to synchronize on their 
common set of events and each one of them needs to synchronize with own set of 
users. 

3.2.5 SystemCSP sequence diagrams 

Code blocks are allowed to specify arbitrary complex sequential OOP designs. In 
principle, they can be designed using UML sequence diagrams or some other type 
of diagrams.  The aim is, however, to be able to create in SystemCSP a complete 
specification sufficient for an efficient coding process, code generation and reverse 
engineering. For specifying sequential code, special diagrams (see Figure 3-22) 
inspired by UML sequence diagrams are proposed.  

 
Figure 3-22 Design of sequential code in SystemCSP 

The basic structure resembles the one of UML sequence diagrams: every object 
participating in the interaction  has a lifeline that reflects the flow of time, function 
calls are visualized using directed lines connecting the lifeline of the object making 
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the function call with the lifeline of the one providing function (see Figure 3-22). 
SystemCSP elements include code block elements, conditional choice, entry labels 
and recursion labels (see Figure 3-22). In addition to elements from SystemCSP 
and UML sequence diagrams, the sequence diagrams in SystemCSP introduce 
notation elements for specifying the scope of the control blocks (i.e. for visualizing 
conditional branching and loops). The borders of the control-flow blocks are 
visualized by means of large square brackets located on the most left side of the 
diagram (see Figure 3-22).  

A problem with UML sequence diagrams was that due to the single time axis, they 
can depict only one scenario. UML2 attempts to solve this by introducing 
interaction operators as described in Chapter 2. Those operators allow one to 
specify multiple scenarios in same diagram by e.g. displaying options of 
conditional choice in separate compartments of a box introduced to represent 
conditional choice.   However, this does in fact reduce the readability of the 
diagram. The idea in SystemCSP is that at any moment, for every condition either 
the true branch or the false branch is depicted. A prospective tool, providing 
support for SystemCSP sequential diagrams, should allow displaying control flow 
in a way that will allow hiding irrelevant parts and displaying only the scenario for 
selected values of switch conditions. The best solution is that toggling true/false 
values for the condition fields, results in the diagram updated to display the chosen 
branch.  The model of the diagram captures the complete control flow of the 
function and the actual diagram visible on the screen depends on the current user 
selections for offered conditional switches. To allow hiding irrelevant parts, in 
addition to true and false branches, it should also be possible to hide both. (in 
Figure 3-22 for condition 1, false or {F} switch is selected, and for condition 2 the 
hidden or {H} switch.  

Every function that is specified via a SystemCSP sequence diagram is expected to 
have defined properties like: description of service that it provides, input/output 
parameters, preconditions, postconditions, and exceptions it may raise. 

Another potential problem with UML sequence diagrams is that they chose to 
display nested function calls, but not code blocks. In that way, a sequence diagram 
does not provide complete specification sufficient for code generation. Displaying 
nested function calls is not relevant for the current abstraction level, especially 
because the used function calls are in good object-oriented programming assumed 
to provide certain services regardless of their internals. Displaying nested function 
calls breaks this kind of encapsulation. In SystemCSP, every sequential design 
diagram focuses on modeling the internals of exactly one function (either a global 
function or a member function of some object) at the time, and thus only the 
function calls made directly from the internals of the visualized function are 
specified. It is assumed that used objects provide well-defined services, and 
peeking into their internal implementation from the internals of currently designed 
function is considered to be bad design practice.  Finding out the implementation 
of those functions would be (with a support of prospective tool) anyway just a 
mouse click away, in the SystemCSP sequence diagram defining the used 
functions. 



68  3 SystemCSP  

 

A side benefit of the decision not to display nested function calls is that the source 
code model needed for construction of the diagram can easily be reconstructed 
from code (reverse engineering), since the contents of only one function needs to 
be parsed. When editing of the function is finished, code is generated and no 
additional data about the visualized function needs to be preserved.  

Introduction of a special kind of diagrams for representing sequential designs 
allows visualization of the coding process, which results in a completely visual 
design process. Entering the design by switching continuously between mouse and 
keyboard slows down the design process, especially when one applies it at the 
lowest design level where most of source code is. For efficient coding, it is 
expected that the prospective tool allows users to enter a complete diagram using 
the keyboard only (e.g. arrows instead of mouse movements as a way to select 
existing diagram elements or to browse for the type of element to insert). The 
presented form of the diagram (e.g. as in Figure 3-22), with predefined placement 
areas for visual elements, provides a form that enables design entering via 
keyboard only. 

3.3 Interaction oriented elements 

3.3.1 Binary compositional relationships   

The interaction-oriented part of the language is inspired by the binary 
compositional relationships of GML.  

As explained in Chapter 2, GML binary compositional relationships have a weaker 
meaning than the related occam constructs or CSP operators. For instance, 
specifying a parallel relationship between two processes does not mean that they 
are synchronizing on the start and termination event, as it would be the case if they 
were composed via a PAR construct of occam. Such a weak relationship gets a 
stronger meaning only after the processes it connects are grouped together (e.g. via 
the bubble notation). A weak binary parallel relationship in isolation (without 
specified grouping) does imply only that the two related processes will have a 
common parallel construct somewhere in the hierarchy of their parent constructs. 

In the section 3.2.1, grouping symbols of type START and EXIT (including FORK 
and JOIN types) were introduced (see Figure 3-12). The START SEQ control flow 
element defines the starting point of a sequential construct. In the interaction-
oriented diagrams, we introduce binary SEQ relationships that relate two processes 
executed in a sequence as part of the same sequential construct. In an interaction-
oriented diagram, START SEQ implies that, in addition to the semantics of the 
SEQ binary relationship, one of the two process blocks, as indicated by the 
direction of the START SEQ symbol, is the first process in the enclosing 
sequential construct. In analogue way, the STOP SEQ binary relationship defines 
that the related pair of process blocks are part of the same sequential construct and 
that one of them as indicated by the direction of the associated STOP SEQ symbol, 
is the last process in the enclosing sequential construct. Thus, since START SEQ 
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and STOP SEQ binary relationships add to the semantic of the binary SEQ 
relationships, we choose to call the binary SEQ relationship WEAK SEQ. 

In the section 3.2.1, the FORK PAR control flow element is introduced to mark 
forking of the control flow on two or more processes that will execute 
concurrently. In the interaction-oriented diagrams, we introduce the binary PAR 
relationships that relate any two of the process blocks forked by the same parallel 
construct. FORK PAR as a binary relationship indicates that, in addition to being 
executed concurrently (weak version of parallel relationship as used in GML), the 
related subprocesses of parallel construct do synchronize on ‘start’ event. The 
JOIN PAR binary relationship indicates that the two related process blocks, in 
addition to being executed concurrently (weak version of parallel relationship), do 
synchronize on the termination event. Specifying both FORK PAR and JOIN PAR 
binary relationships indicates that, besides being executed concurrently (weak 
version of parallel relationship) the related process blocks do synchronize on both 
start and termination events, which is equivalent to grouping them via a CSP 
parallel operator or occam PAR construct.  

When two process blocks are related both with a FORK and a JOIN of the same 
kind of a binary relationship, we introduce one symbol instead of two and call such 
binary relationship a STRONG relationship. The symbol for a STRONG 
relationship (see Figure 3-23), in addition to the symbol of the operator, contains 
both FORK and JOIN symbols.  

Besides FORK, JOIN and STRONG, we also explicitly introduce WEAK binary 
compositional relationships. A WEAK PAR exists between those process blocks in 
parallel branches that do not synchronize on START or EXIT events. Process 
blocks related via a WEAK PAR binary relationship can however synchronize on 
any number of user-defined events. The WEAK interleaving PAR specifies that the 
related process blocks are executed concurrently and that there is no 
synchronization at all between them.  

The sequential binary relationship in addition to its STRONG and WEAK form 
also has a PRECEDENCE form. It specifies that the involved process blocks are 
executed one after another, but not necessarily immediately after each other. Thus, 
the PRECEDENCE relationship is weaker then WEAK SEQ. In fact, the 
PRECEDENCE binary relationship matches the SEQ binary relationship of GML. 

Figure 3-23 depicts symbols for WEAK and STRONG binary relationships. 

 

Figure 3-23 STRONG and WEAK relationships 
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Figure 3-24 illustrates an example of an interaction diagram and related CSP 
expression. In interaction-oriented diagrams, a process block defines the preference 
indexes for its binary relationships (see numbers at the ends of the relationships). 
Lower the number, the related construct is closer in hierarchy of constructs. 
Number 1 indicates an immediate parent construct (thus, in Figure 3-24, the 
immediate parent construct of P, Q and R is sequential, of M it is parallel and of N 
it is external choice). Note that in this ordering, the same number implies the same 
construct. Thus, a process block can use the same preference index only for the 
binary relationships of matching types (e.g. in Figure 3-24 for process block Q, two 
SEQ relationships that have the same preference index can be resolved via the 
same sequential construct).  

 
Figure 3-24  An interaction-oriented diagram 

A binary relationship is uniquely defined for any pair of process blocks belonging 
to the same control-flow diagram. From a complete CSP expression or control flow 
diagram, it is possible to deduce a binary relationships and associated preference 
indexes for any pair of contained process blocks. Simply, the type of the 
relationship is the one of the nearest parent CSP operator that contains both of 
processes located somewhere inside its operands. The STRONG relationship 
relates two process blocks if they are both located directly after the same START 
control flow element and directly before the same EXIT control flow element. 
WEAK relationship indicates that the related process blocks have a common parent 
construct somewhere in the hierarchy.  

Compared to GML, introduction of START and EXIT, WEAK and STRONG 
variants allows incomplete specifications for the borders of constructs during the 
design process. Instead of explicit grouping (via box or bubble notation), and in 
addition to GML-like binary relationships, reasoning about synchronization on 
starting and termination can be specified. The preference index is in essence the 
same as the index of the bubble in GML increased for 1. However, in SystemCSP 
idea is to allow the designer to just order and reorder the list of binary 
compositional relationships of a process block. Actually, the index number is in 
fact preference of the process block about its distance (in the hierarchy of parent 
constructs) from the construct that resolves the binary relationship. This insight 
does allow one to forget GML idea of explicit grouping via bubbles as parenthesis 
and to partition interaction-oriented diagrams in any number of smaller interaction-
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oriented diagrams with the same blocks allowed to participate in many interaction 
diagrams. 

Interaction-oriented diagrams allow one to focus attention on several processes in 
the isolation from the rest of the system. Binary relationships specified in 
interaction diagrams define restrictions that control flow diagram is expected to 
fulfill. Such a restriction can be satisfied with using the same or higher strength 
relationship in the control flow diagram. If higher strength relationship is used, that 
should be reflected back by automatic update of the relationship between process 
blocks in all related interaction diagrams. The relationships between roles inside 
interaction contract stay the same regardless of the context of using the contract.     

Visualizing binary relationships and preference indexes is optional in interaction-
oriented diagrams. Interaction oriented diagrams are convenient for putting focus 
on interactions, structure and data flows. Thus to make them useful, there should 
be a way to visualize events on which related processes synchronize, and to display 
the related communication data flows.  

3.3.2 Synchronization events and data flow 

In Figure 3-25, processes P and Q are related via FORK PAR binary relationship, 
meaning that they are executed concurrently and that their execution starts at the 
same time. In addition, in Figure 3-25, below the interaction line, a set of user-
defined events on which they do synchronize is specified inside curly braces. Note 
that some events are channels. The data flow direction of channel is indicated via 
directed lines immediately above the name of the channel (e.g. in Figure 3-25 
channel ‘ch1’ transfers data in both directions, while ‘ch2’ transfers data from Q to 
P).  In addition, it is allowed to associate numbers with events, in order to specify  
ordering of events and in that way indicate the scenario of interest. 

 
Figure 3-25 Binary compositional relationships and data flow 

Sometimes, however, it is useful to visualize only data flow without listing all 
synchronization events and channels. In lower part of the Figure 3-25, the used 
symbol indicates the existence of a data flow directed from process block M to 
process block N. 
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3.3.3 Refinement operator  

The refinement operator defines that one of the related processes is a specification 
that the other one needs to refine. The symbol used to adorn binary relationship is 
the same as in CSP (see Figure 3-26). Refinement verification is a very important 
vehicle in formal checking. For instance, in a stepwise development process, the 
implementations of systems are built through set of incremental iterations with 
checking conformance to specification after every cycle.  

 
Figure 3-26 Refinement relationship 

3.4 Interacting components 
SystemCSP is a graphical modeling language based on both CSP and concepts of 
component-based software development. SystemCSP provides a way to visualize 
architecture, behavioral patterns of components, intra–component interactions and 
execution relations among components.  

The notation makes a distinction between components, interaction contracts and 
processes. CSP is focused on the interaction between processes. A process is 
viewed as a behavior described via some named pattern of event synchronizations. 
In SystemCSP, the term component is used as in modern notions of software 
development: “A component is a unit of composition with contractually specified 
interfaces and fully explicit context dependencies that can be deployed 
independently and is subject to third-party composition” (Szyperski, 1998). From a 
CSP point of view, the behavior of a component is captured as a complex process, 
described with the help of one or more auxiliary processes. An interaction contract 
is a process or a component that has the responsibility to manage the interaction of 
some other components. 

3.4.1 Structural units  

Components 

Component is alike to process block element defined in section 3.1.2. The main 
difference is that a component is larger structural unit of composition that can be 
deployed independently. A component can contain smaller structural units, like 
variables, code blocks, process blocks, processes, subcomponents. It is a 
reconfigurable and reusable unit, which can be used in different contexts and 
different interaction scenarios. In CSP sense, the behavior of a component is 
described as a process. As it was the case for process blocks, a distinction is made 
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between component types and component instances. Everything said in section 3.3 
for process blocks applies for components as well. 

In our notation, components are enclosed in a rounded rectangle (see Figure 3-27) 
specifying the boundaries of the component. As with process blocks, opaque-box 
and transparent-box notations are possible. The entry point of a component is 
always marked with a start element. Variables defined in the component scope 
can optionally be represented via labels floating somewhere inside the borders of 
the encompassing component. A variable label contains the variable declaration 
consisting of its name and its type separated by a colon.  

Ports and interfaces 

An event port is an access point that exports an event end to the environment of the 
component. In Figure 3-27, event ports are depicted as little rounded rectangles 
attached to the outer side of the component border. The interaction line connecting 
an event-end with its associated port is visualized optionally (e.g. in Figure 3-27 it 
is visualized for ‘ev1’, but not for event ‘ev2’).  

A port label carrying the externally visible name of the event associated with the 
port, can be inside the port symbol or next to it. The name used in a port label can 
be different from the one of the related event-end (e.g. in Figure 3-27 event–end 
‘event3’ from component C1 is exported to environment via port named ‘ev3). In 
mapping to CSP, this would be implemented with the renaming operator.  

A channel port (see ‘ch1’ port in the Figure 3-27)  is an event port with port label 
containing one or more signs of type “?” or “!” to indicate the direction(s) of 
associated data flow(s). Channel ports and event ports are on both participating 
sides depicted on the outer side of the involved components. 

 
Figure 3-27  Component, ports and interfaces 

In Figure 3-27, the behavior of the component C1 is represented via process P1. In 
case of event ‘ev1’, the relation between the EventSync processes and the 
associated port is specified via a dashed line. In case of event ‘ev2’ the same is 
achieved via using the same name. Both representations are allowed. 

An interface port (e.g. see ‘user interface’ and ‘printing’ ports in Figure 3-28)  is a 
higher-level access point to a component, that internally contains event port(s) 
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and/or channel port(s). In addition, it can specify interaction pattern of the 
associated role implementation or specification. 

Interface ports appear in pairs consisting of the required and the provided 
interface. The provided interface is related to the implemention (provided by the 
component) of a role in an interaction. The required interface specifies the role in 
the interaction required by the component. In SystemCSP, both implementation 
and specification of a role in some interaction are in fact some CSP processes, and 
refinement must hold between specification and implementation. 

The printer component on Figure 3-28 is a server providing the implementation of 
the service needed by its users, but in the same time it is a client of some lower 
level printer device controller that takes care of the actual implementation of those 
services. 

 
Figure 3-28 Interface ports 

Interface ports are depicted in same shape as event ports but larger in size. Ports 
representing a provided interface are located at the outside of the components (see 
port ‘user interface’ in Figure 3-28). The ports representing a required interface are 
depicted as plug-in sockets (see port ‘printing’ in Figure 3-28).  

Interaction Contracts 

Specification and implementation of interaction among participating components is 
formalized via the notion of an interaction contract.   

An Interaction contract is a special purpose component, dedicated to managing an 
interaction of some components, in a structured and formally verifiable way. The 
existence of interaction contracts allows reasoning about the interaction in 
isolation, without a need for actual components.  

An interaction contract specifies the roles of the participating components. 
Component participating in interaction contracts must provide an implementation 
that is a refinement (in the CSP sense) of the role specification given in the 
interaction contract. 
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Contracts usually contain an internal component dedicated to managing the 
contract. For instance, let us imagine that the process Race from Figure 3-17 is 
specifying an interaction contract. In that case, the processes Runner1 and 
Runner2 could be considered to be roles implemented by some external 
components and all the rest would actually be an internal component managing the 
Race interaction contract. 

Some of the simple and widely used interaction contracts are: shared memory, 
buffered channel, Any2One, One2Any, Any2Any channels. Interaction contracts 
can be made for any kind of application-specific scenario and can be reused in the 
same way as components.  

 
Figure 3-29  Interaction - direct and via contract 

Figure 3-29 displays interaction of several components cooperating directly or via 
simple interaction contracts. Component A and component B interact directly and 
for simplicity, even the port elements are omitted in the diagram. Component B 
participates in interaction with components P and Q in a way specified in the 
interaction contract named Contract 1. It implements Role 1 of that contract. 
Component B also participates in an Any2One contract as one of several possible 
Producers. In the same contract, component R plays the role of the Consumer. The 
ports displayed in Figure 3-29 are associated with provided and required roles.  

Both Contract1 and  the Any2One contract in Figure 3-29  are visualized using the 
opaque-box approach. The internals of an interaction contract can also be 
visualized in transparent-box approach. In the transparent-box approach, roles are 
depicted in separate areas and associated with appropriate ports.  

Contexts 

A component can contain subcomponents and contexts (see Figure 3-30).  A 
Context is a structure used by the component management system to organize 
logically related information about available interaction contracts and provided 
and required interfaces of components. As such, it provides a mechanism that is 
particularly useful for dynamical reconfiguration, allowing a component to 
discover its environment through querying the contexts of the host component. 
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Contexts are a kind of meeting point for components and interaction contracts. 
Upon entering a context, a component needs to register with the context. During 
the registration it is expected to provide the list of the interfaces that it is ready to 
publicly share and make available to other components and interaction contracts 
present in the same context.  A component can query an opened context and find 
out about other interaction contracts, components, provided and required 
interfaces present in the context. A context can also contain links/passages to other 
related contexts in the same or in some other component. For instance, a context 
that does not provide some interaction contract or interface might have a link to a 
related context that does.  

 

Figure 3-30 Contexts and contracts 
Interaction contracts are abstract definitions, whose instances can be located inside 
some contexts (see Figure 3-30). Contexts provide concrete environments in which 
interaction contracts can appear. Parameters of the interaction contract might need 
to be initialized with data from the context or mapped to objects existing in the 
context. For instance, a football game can be considered an interaction contract 
with certain rules. The abstractions used in the description of rules (e.g. football 
terrain elements) must be mapped onto existing objects in some real world context 
(i.e. real world objects that are used to play the role of the football terrain 
elements).   

In SystemCSP, besides a process describing the normal execution mode, 
components optionally contain a process managing possible reconfiguration 
scenarios and a process specifying the recovery activities upon occurrence of 
exceptional situations (see processes named ‘Reconfiguration Layer’ and ‘Fault 
tolerance layer’ in Figure 3-30). 

3.4.2 Interaction and control-flow diagrams  

The experience with using GML, showed that specifying binary relationships 
among components is very useful in early stages of the design, but is somewhat 
cluttering readability in later phases when focus is on control flow.  
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This project goes a step further with the philosophy behind using binary 
compositional relationships. Insight is obtained that a representation based on 
binary relationships is in fact a good basis for fragmentation of the design into a set 
of diagrams. The same entity can appear in any number of such partial diagrams.  
This does introduce early design freedom in a sense that a design can be specified 
iteratively with focusing on particular interactions among several components, 
specified in isolation from the rest of the system.  

The description of every component contains one control-flow diagram and one or 
more interaction diagrams. A control-flow diagram focuses on control flow 
elements that determine possible execution orderings of components. An 
interaction diagram is a diagram that specifies the way in which components 
interact. It usually contains a set of components (in opaque-box or in transparent-
box notation) centered around an interaction contract.  

SystemCSP allows the same component to participate in any number of different 
interaction diagrams. This is in a way similar to UML diagrams where one can 
focus on certain aspects of some entity in one diagram and on other aspects in 
other diagrams. Unlike in UML notation, where there is no relation between 
different diagrams, in SystemCSP all interaction diagrams inside one component 
provide a single, consistent, formally verifiable, model of the component. This 
model is reflected in the control-flow diagram of the component. 

A component specifies its binary compositional relationship with other 
components in different interaction diagrams it participates in. The set of all its 
binary compositional relationships from all interaction diagrams it participates in, 
determines its position in the control-flow diagram of the parent component. 

At the left-hand side of Figure 3-31 two interaction diagrams are given, and on the 
right-hand side the associated control flow diagram is shown.  

In Figure 3-31, components B and C appear in both interaction diagrams because 
they engage in both interaction contracts. Component B is in the upper interaction 
diagram depicted via the opaque-box approach, and in the lower one via the 
transparent-box approach. Contract 1 from the upper interaction diagram is 
depicted via the transparent-box approach and Contract 2 from the lower 
interaction diagram is depicted via the opaque-box approach.  

Components A and B are, in upper interaction diagram from Figure 3-31, related 
via FORK PAR binary relationship. For component B, the preference of this 
relationship is set to 1 and for component A it is 2 (preference 1 has its STRONG 
SEQ relationship with C). That means that in the control flow diagram components 
A and B are in the same parallel construct, with component B as direct subprocess 
and component A as a part of its subprocess organized as a sequential construct in 
which component A is the first subprocess and component C is the second one. 
Component D is composed in STRONG CHOICE relationship with component B.  
For component B this is the relationship of preference index 2 (after the parallel 
relationship with components A and C) and for component D of preference index 
1. This indicates that component D is composed in an external choice construct 
with parallel composition consisting of component B and a sequential composition 
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of components A and C. The other specified binary relationships are redundant and 
can serve as a check whether the specification is illegal or not. 

 

Figure 3-31 Specifying execution relationships in interaction views 
By aligning elements of the control flow diagram in such a way that the control 
flow goes downwards with FORKs and JOINs as horizontal lines connected via 
prefix arrows to the involved components below and above, a form that resembles 
the UML activity diagram is created (see the control flow diagram in Figure 3-31).  

In principle, the design starts by specifying interactions among few components in 
isolation. An interaction diagram captures only the binary relationships relevant for 
the given interaction.  Often, at first the WEAK relationships (PRECEDENCE, 
WEAK SEQ, WEAK PAR, WEAK CHOICE) are specified, which are then either 
gradually refined to stronger variants (START, STOP and STRONG kinds of 
binary relationships) that specify implicit grouping or they stay weak if that is an 
intention.  

Components participating in an interaction diagram do not exist in isolation; they 
are nested in some parent component that specifies a set of their possible execution 
orderings in the associated control-flow diagram (e.g. the right-hand side diagram 
of Figure 3-31). Thus, there is always some compositional relationship between 
participating components. Specifying binary compositional relationships is 
optional in interaction diagrams. Only the binary relationships relevant for the 
interaction diagram are visualized.   

Benefit from introducing interaction diagrams is that they provide significant 
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design freedom, as necessary in early stages of the design, by allowing incomplete 
specifications scattered in many diagrams focused on particular aspects of the 
system.  

The used approach enables incremental design of control-flow oriented diagrams 
by adding restrictions in different interaction-oriented diagrams throughout the 
process of system design. In this way, all different diagrams are combined into a 
single formally verifiable system. 

3.4.3 Discussion 

In the following text, an attempt is made to position the notion of interaction 
contract as used in SystemCSP, compared to the other approaches described in 
chapter 2.  

The interaction contract of SystemCSP is matching the concept of the connector 
concept in WRIGHT. The name interaction contract was chosen because it is more 
general and better suits its purpose then the name connector. Indeed, most simple 
interaction contracts (event, Any2One channels, buffered channels, etc) can be 
classified as connectors. But the entity specifying an interaction among devices in 
an industrial production cell is more then just a connector. Unlike WRIGHT, 
SystemCSP can visualize interaction contracts, as well as other entities useful in 
the development of concurrent, component-based systems. 

Compared to the formal contracts of Boosten (Boosten, 2003), interaction 
contracts are directly implemented as CSP processes and there is no need for 
transformation in order to achieve formal checking. In addition, interaction 
contracts are not considered a substitute to channels, but a higher-level primitive 
described via event (channel)-based interactions with participating components. 

The Coordinated atomic actions (CA actions) safety pattern (Zorzo et al., 1999) 
illustrates the importance of a centralized entity maintaining the interaction 
between participating components and thus serves as a motivation for introducing 
interaction contracts as separate, explicitly existing entities. Compared to CA 
actions, interaction contracts are considered to be a more structured approach 
because they achieve the same purpose, but rely on a safer and more structured 
way to use concurrency. As in CA actions, one of the main powers of interaction 
contracts is the opportunity to nest handling of exceptional situations in contract 
facilities, where more knowledge is available about the current state of interaction 
than in participating components in isolation.   

An interaction contract is an abstract entity whose main purpose is specifying and 
managing interactions between components. By defining interaction as an abstract 
entity (that can be instantiated in the same way as components can), a possibility 
for reuse of the design patterns captured in a form of interaction contracts is 
introduced. An interaction contract prescribes the roles of the participants and 
offers additional interaction management support. It can introduce additional 
constraints in the way component instances interact, provide buffering support and 
exception handling facilities. A contract normally consist of three phases: checking 
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preconditions, performing the action and checking postconditions. An action can 
contain an interaction pattern specified via events or via subcontracts. 

In the light of the four level of contracts classified in (Beugnard et al., 1999), the 
interaction contract of SystemCSP provides a natural support for the first three 
levels and the possibility to build an application specific Quality of Service layer 
on top of the first three layers. On the basic contract level, an interaction contract is 
described via event/channel interconnections, operations/actions they represent 
with associated input/output parameters and a defined set of possible exceptions 
that can propagate via the event/channel infrastructure. The second level is 
achieved by dividing every contract into three parts: optional checking of 
preconditions, the mandatory action and optional checking of postconditions. The 
third level is naturally supported by the CSP structure of the contract including the 
participating roles and the optional contract manager. In addition to the used 
channel/event ports, the CSP description of the contract encapsulates all possible 
scenarios for contract execution. Level 4 contracts can be built as an additional 
layer in the application specific contracts. General design patterns can be made to 
construct reusable QoS contract layers. 

An interaction contract specifies roles for which a component willing to participate 
must provide an implementation. The implementation of a role must be a 
refinement in the CSP sense (traces, failures, failures/divergencies levels of 
refinement) of the role description required in the contract. In CSP, the 
implementation is considered to be the trace refinement of the specification when a 
set of event traces that can be produced via execution of the implementation 
process is a subset of the set of traces that can be produced by the execution of the 
specification process. In other words, a behavior of an implementation must stay 
within the behavior defined in the specification. This approach allows stepwise 
refinement during the design process and a formal verification of even early stages 
of the design. The same role/component can be represented via several process 
descriptions on different abstraction levels ranging from a high-level specification 
to a low-level implementation. The refinement property between process 
descriptions on different levels can be formally verified.  

Chapter 5 illustrates the concept of an interaction contract by introducing a set of 
design patterns in the form of reusable SystemCSP interaction contracts. 

3.5 Distributed Systems – Allocation  
This research is focused on systems that execute on distributed computer platforms 
and need to interact with processes from the physical world (plant in the further 
text). Interaction between computing nodes takes place over network 
interconnections and interaction between application and the plant takes place via 
I/O interfaces. In our approach, plants and computing nodes are considered 
components, and networks and I/O interconnections are considered system-level 
interaction contracts. The system level interaction diagrams specify the topology of 
distributed system consisting of nodes and networks, and the allocation of  
components to nodes.  Some components can be replicated on several nodes. 
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Alternative network routes are visible in such a diagram. It is already stated that 
specifying binary compositional relationships is optional. In the case of system-
level interaction diagrams, that focus on the topology and allocation, the preferred 
choice is to completely omit binary compositional relationships, as is the case in 
Figure 3-32.  

System-level interaction diagrams are usually used to illustrate the allocation of 
components and contracts participating in same interaction. 

 
Figure 3-32  System-level interaction diagram 

Figure 3-32 illustrates a system-level interaction diagram concerned with the 
interaction of components A, B, C, D, E, F and G via interaction contract 
Contract1. In this configuration, Node 4 and Node 1 actually contain the same 
components. The connectivity of Node 1 to Nodes 2 and 3 is via network NW1 and 
Node 4 is connected to Nodes 2 and 3 via network NW2. This network topology 
suggests that this might be a design of a fault tolerant system that can survive a 
failure of either network NW1 or NW2. It can also survive the failure of either 
Node 1 or Node 4. For the proper synchronization of replicas, an additional 
interaction contract is needed. Chapter 5 provides designs for the hot-standby, 
cold-standby and majority voting replica managing interaction contracts.  

Replicas are optional. In Figure 3-32 a special symbol is introduced to mark 
optional components (components D and G on node 1, A on node 2, and A and B 
on node 4). The used symbol is the symbol for a component, but with a border 
depicted using a dashed line instead of a solid line. The optional process block is, 
in analogue way, represented as a process block whose borders are visualized via a 
dashed line. 

Software components and contracts must always belong to some node. One can 
express this visually by assigning a special port (see Figure 3-33) to every software 
component. This port needs to be attached to some node kind of component.  

The difference of such node ports as opposed to interaction related ports, is 
comparable to the difference between power supply ports in electric circuits 
compared to data signal ports. Thus, a node port is depicted in a somewhat 
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different way than ordinary ports. It is located inside the component/contract 
giving a visual impression of a plug-in socket for putting the software component 
on top of the node.  

 
Figure 3-33  Node ports 

3.6 Related Work 
This section attempts to compare SystemCSP with other approaches for visual 
specification of interactions in concurrent software systems. First, a comparison is 
made to UML, which is the de-facto industry standard for software development. 
Then a comparison is made to GML, as a predecessor of SystemCSP based on an 
occam-like approach and the concept of using binary compositional relationships. 

3.6.1 SystemCSP vs. UML  

UML defines several different kinds of unrelated diagrams. Section 2.2.1  
introduces briefly the most relevant types of UML diagrams. In UML, every 
diagram puts focus on certain aspect of the system and there is no clear relation 
between different types of diagrams.  

SystemCSP gives precise relation between entities in a way that spans across 
various diagrams. It does this by relying on a formal method. 

Structuring concurrency is in UML not primary focus. UML can describe control 
flows/activities going through passive objects. But it does not offer any model for 
structuring concurrency. UML aims to be general modeling language.  

In SystemCSP, focus is on offering structured way to deal with concurrency. 
Consequently, a way to structure concurrency is prescribed. This is achieved 
through the introduction of basic elements that map to CSP operators, giving in 
that way the possibility for formal verification. The motivation behind the choice 
to prescribe the way of structuring concurrency, instead of just providing generic 
elements to describe any way to do that, is that insight is obtained that the main 
source of complexity in most systems, is in fact a concurrent existence of 
interacting entities. Thus, well-structured concurrency can significantly decrease 
the complexity of the system.  
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A UML design starts with capturing intended functionality in the form of the UML 
use case diagrams (see section 2.2.1  in chapter 1). In Figure 3-34, an UML use-
case scenario describes ways to use a program.  

 
Figure 3-34 A use-case diagram in UML 

Figure 3-35 depicts the same use-case specification but using SystemCSP elements 
defined in this chapter. In SystemCSP, it is possible to specify whether a 
user/system/use-case is implemented as a process or as a component.  

 
Figure 3-35  A use case scenario 
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A communication relationship relating the user and the use-case from the UML use 
case diagram, maps in SystemCSP to the interaction between appropriate 
processes/components.  

An include relationship of a use case diagram is in SystemCSP just a containment 
of the process/component representing the included use-case (e.g. processes ‘Open 
Doc’, ‘Save Doc’, ‘CloseDoc’ are specified nested inside ‘Use Program’ 
component in Figure 3-35).  

An extend relationship of UML use-case diagrams is mapped to the optional 
component/process (e.g. ‘Validate user identity’ is in SystemCSP specified as an 
optional process block in Figure 3-35).  

Generalization/specialization is indicated via a refinement relation (in Figure 3-35 
“Password check” and “Iris scan” are possible specializations of the more general 
“Validate user identity” scenario).  

In addition, in SystemCSP it is possible to specify binary compositional 
relationships between processes/components that indicate for instance expected 
order of using, whether use-cases can be used concurrently, or a choice is made 
and so on. 

In SystemCSP, specializations are expected to be refinements of more general 
specifications. The same is true for implementations of use-cases. In that way, the  
development process can be based on a step-wise refinement paradigm, starting 
with more abstract specifications and going iteratively towards more specific 
implementations that still behave in the ways defined on previous more abstract 
levels. 

On right hand-side of a Figure 3-35, the implementation of the Close Doc use-
case is given using a standard SystemCSP diagram. Note that activities like 
displaying a “Save changes” dialog, and performing save document and 
close document activities are actually depicted as non-interacting processes. 
The reason is that on the depicted level of abstraction, those activities do not 
communicate to the environment. However, inside they can contain events and 
processes. 

UML state diagrams are based on the StateChart approach that is a more 
expressive and a more semantically rich version of the classic finite-state-machine 
(FSM) automata.  A comparison between FSM and SystemCSP was given in 
section 3.2.3. As it was concluded, the main paradigm shift is in putting focus on 
events instead of on states. Otherwise, FSM diagrams can be considered directly 
translatable to SystemCSP. SystemCSP contains elements that do not have 
counterparts in FSM diagrams. 

UML activity diagrams of are most similar to control-flow oriented SystemCSP 
diagrams. An activity element of an activity diagram is essentially a process or a 
component in SystemCSP. Fork and join of activity diagrams are PAR FORK and 
PAR JOIN in SystemCSP. A control-flow arrow in an activity diagram is a prefix 
element in a SystemCSP diagram. A conditional branching based on the value of a 
logical guard in an activity diagram, is an IF choice in a SystemCSP diagram. The 
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data flow in an activity diagram has in SystemCSP the more precise semantics of 
EventSync peer synchronization and data exchange. 

UML communication diagrams (previously known as object diagrams) emphasize 
structural aspects and the associations between objects via which messages are 
transferred. Ordering is specified by attaching numbers to operations. In a way, this 
is similar to the interaction-oriented diagrams of SystemCSP where focus is also on 
structural aspects and it is allowed to assign numbers to events in order to give 
better insight in the underlying interaction scenario.  

UML sequence diagrams emphasize the time ordering of messages among objects 
participating in an interaction scenario. This is done by associating a vertical 
dimension of the diagram with time. Code blocks of SystemCSP are on a lower 
level where there is no possibility for concurrency and they can be designed or 
documented e.g. using UML sequence diagrams. SystemCSP sequence diagrams 
attempt to take best properties of UML sequence diagrams and SystemCSP 
diagrams and combine them in a more efficient way of entering code for pure 
computation code blocks. The comparison is done in more details in section 3.2.5 
where the SystemCSP sequence diagrams are introduced.  

3.6.2 SystemCSP vs. GML  

SystemCSP started as an attempt to enhance the expressiveness of GML, especially 
to include state machine behavior. However, SystemCSP diverged to a completely 
different notation based on CSP.  

Compared to CSP, the occam subset of CSP offers only limited expressiveness for 
specifying and designing concurrent systems. As a consequence, GML as an 
occam-oriented approach suffers from the same limited expressiveness. 
SystemCSP is CSP-based, and not occam-like.  

GML has, as occam, only the ALT kind of choice. ALT is a choice between two 
processes with a control flow continuing at the same place after a chosen 
alternative regardless of what was the choice. SystemCSP strictly follows CSP 
semantics and introduces a guarded alternative control flow element that 
essentially forks alternatives without forcing the existence of a common join place. 
This allows building diagrams alike to FSM diagrams.  

The introduction of process entry labels and recursion process labels in 
SystemCSP  is one of the elements that enable full expressiveness of CSP. While 
GML does not allow recursions other then loops, SystemCSP allows mutual 
recursions to be specified. Process labels also help to make diagrams more 
readable by omitting the prefix lines connecting recursion invocation to a recursion 
entry point. 

In GML, as in occam, a process is a structural unit like a component in modern 
software development. In SystemCSP, a process is, as in CSP, more a behavioral 
than a structural unit.  A process is a named point in a control flow and sometimes 
it can be separated from other processes using process blocks creating in that way a 



86  3 SystemCSP  

 

basis for defining structural units.  Process blocks are abstract types that can have 
named or unnamed instances. Process blocks interact with environment via 
event/channel ports. Components are larger structural units. 

GML has a somewhat cluttered readability, caused by using only binary 
relationships and no control-flow elements. Control-flow oriented part of 
SystemCSP gives better readability concerning observing control-flow patterns. 

Binary compositional relationships of GML have weak semantics. E.g. specifying 
a parallel binary relationship means that the related processes do have a common 
parent construct of type Parallel somewhere upwards in the hierarchy of 
processes. Exact location of such a common parent construct is imposed via 
explicit grouping.  

SystemCSP introduces WEAK, START, EXIT and STRONG types of 
relationships. This enhances the expressiveness by allowing the designer to specify 
expected synchronizations on start and termination events in addition to specifying 
only weak versions of relationships.  

In addition, the meaning of indexes associated with relationship ends is interpreted 
as the preference ordering of the compositional relationships, and not as a 
consequence of grouping. This way of interpretation created basis for fragmenting 
design in any number of interaction diagrams. The same component can appear in 
different interaction diagrams concerned with different aspects of the designed 
system. 

Interaction diagrams are allowed not to be fully specified. By grouping, in separate 
diagrams, the components participating in certain interactions, and by displaying 
only the relevant binary compositional relationships, cluttering of readability is 
avoided in SystemCSP interaction diagrams. In the same time, early design 
freedom is enhanced. 

GML lacks explicit support for modern notion of component-based design and 
development. SystemCSP does introduce the basic notions of component-based 
development.  

3.7 Positioning 
Figure 3-36 represents an attempt to position SystemCSP in the overall software 
development process. SystemCSP diagrams aim to cover the areas of component-
based design, structuring the concurrency and specifying deployment. In addition, 
the sequential, pure computation code, can be specified via SystemCSP diagrams. 
However, UML class and object diagrams are still useful in combination with 
SystemCSP. A prospective SystemCSP tool should provide design editor for all 
those kinds of diagrams. On lowest level, there is domain specific modeling, with 
domain specific diagrams and tools. Idea is that code generated by these tools can 
be imported in the prospective SystemCSP tool.  
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Figure 3-36 Development areas, and diagrams and tools intended to cover them 

3.8 Implementation 
At the moment of writing, there is no tool that can support SystemCSP design 
methodology. Diagrams given in this thesis are drawn in Microsoft Office Visio by 
creating a template containing dedicated set of shapes corresponding to the 
elements of the notation. Thus, no code generation is possible, and no automated 
formal checking is available. This thesis provides theoretical support for the 
prospective tool in the form of the basic notation elements, illustration of their 
mapping to CSP, metamodel of the notation and the design of software framework 
library that can support execution of code generated out of SystemCSP models.   

Metamodel of the notation 

A model in any domain is made out of instances of abstractions, interconnections 
and laws of the domain. A metamodel provides definitions of the abstractions used 
in a modeling domain and captures their possible structural relationships. Any 
model in a domain is, seen in that light, some combination of instances of the 
abstractions and relationships allowed by the underlying metamodel. These 
abstractions, as well as a set of possible relationships between them, can, for 
instance, be expressed via a set of UML class diagrams.  

A purpose of creating a metamodel is making a definition of the modeling domain. 
Such a definition can, for instance, be used as a basis of a structured way to capture 
models in tool implementations. Another advantage of using a metamodel is its 
potential to introduce a standard, tool independent, way of data interchange 
between different domains and tools.  

Appendix A uses UML class diagrams to define the metamodel of the SystemCSP 
design domain. 

Mapping to software domain 

In previous sections, a graphical notation was introduced. However, to be really 
useful, a design entered in a visual notation does need to have an efficient 
implementation in software, hardware or some other domain. Figure 3-37 depicts 
domains relevant for SystemCSP models. Inside a prospective tool, creation of 
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models should be possible via using graphical editors and views to update and 
inspect the current structure of the model. From a single non-ambiguous model, it 
should be possible to generate CSPm scripts, software and hardware 
implementations in different software and hardware programming languages.  

 
Figure 3-37 SystemCSP source and target domains 

Code generation is a procedure of transforming a model from its source domain 
representation (the SystemCSP design domain in Figure 3-37), to a target domain 
representation (CSPm script, SystemCSP software implementation and SystemCSP 
hardware implementation in Figure 3-37).  

Appendix B focuses on the infrastructure needed in the ‘SystemCSP software 
implementation’ target domain to support the implementation of a model specified 
in SystemCSP. The architecture of this framework for the software implementation 
of SystemCSP designs is also visualized using UML class diagrams. At the 
moment of writing, specified software framework is partly implemented.  

3.9 Conclusions 
A novel graphical description language for concurrent, component-based systems 
is introduced. The SystemCSP notation is intuitive, readable and based on CSP 
formal algebra. The notation has two essential viewpoints: control flow oriented 
part and interaction oriented part.  

SystemCSP also includes concepts from modern component-based software 
engineering practice. The notion of interaction contract allows specifying, 
studying, analyzing (e.g. formal checking) interaction patterns in abstract way, in 
the isolation from the actual context of usage.  

Incremental design of control-flow diagrams is possible by adding restrictions in 
different interaction diagrams throughout the process of system design. This is 
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particularly useful in early stages of the design, when the focus is on interactions of 
sets of components in isolation from the rest of the system. At the end of the design 
process, all different diagrams converge into a single, formally verifiable, system 
expressible via control-flow diagram. 

The notation has been compared to relevant related graphical design specification 
languages, namely UML and GML. SystemCSP does incorporate some ideas from 
both. From its predecessor GML, concept of binary compositional relationships is 
inhereted and reused in interactionoriented diagrams. UML has also strongly 
influenced SystemCSP. The comparison with UML illustrated that SystemCSP is 
capable to offer alternative to the most types of UML diagrams. The exception to 
this is the UML class diagram that is convenient for usage in combination with 
SystemCSP diagrams.  
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4 Real-time and CSP  
Everywhere is within walking distance if you have the time.  
 

                                  Steven Wright 

Various approaches attempt to introduce ways to specify time properties in CSP 
theory (Roscoe, 1997; Schneider, 2000). SystemCSP as a design methodology 
based on CSP and intended to be suitable for the real-time systems application 
area, offers a practical application of those theories. The way in which time 
properties are introduced in SystemCSP also makes a connection between the two 
referenced approaches of theoretical CSP. Section 4.1 presents ways to specify 
time properties in SystemCSP. 

Specifying time properties is one part of the problem. It allows capturing time 
requirements and execution times. In practical implementations, the resulting time 
behaviour of processes is also the consequence of time-sharing of a processor or 
network bandwidth. This time-sharing implies switching the context of execution 
from one involved process to another, where the order of execution is based on 
some kind of scheduling.  

Classical scheduling theory offers recipes to give real-time guarantees for systems 
where several tasks share the same processing or network resource using some 
priority based scheme. However, as it will be illustrated in section 4.2, there is an 
essential mismatch between the programming paradigm assumed by classical 
scheduling techniques and the one offered by the CSP way of design. This 
mismatch raises the fundamental question: are CSP-based systems suitable for 
usage in real-time systems or should one rely for this application area on some 
other method? This chapter will attempt to show possible directions in solving the 
problem of achieving real-time in CSP-based systems. The first direction in 
addressing this problem is constructing CSP-based design patterns that can match 
the form required by the classic scheduling techniques. The second direction is 
oriented towards the creation of scheduling or real-time analysis theories specific 
for CSP-based systems.  

4.1 Specification of time properties  

4.1.1 Discrete time event ‘tock’   

Roscoe (1997) specifies time properties by introducing an explicit time event 
named tock. This implicitly introduces the existence of a discrete clock that 
advances the time of the system one step with each occurrence of the ‘tock’ event. 
Time instants can thus be represented by a stream of natural numbers, where every 
occurrence of the ‘tock’ event can be considered to increase the current time for one 
basic time unit. All processes with time constraints synchronize with the progress 
of time by participating directly in the tock event, or via interaction with 
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processes that do. Advantages of this approach are that it is simple, easy to 
understand and flexible. It does not introduce any theoretical extensions to CSP 
theory and thus formal checking is possible using the same tools (FDR) as in 
untimed CSP. 

4.1.2 Timed CSP  

Timed CSP (Schneider, 2000) extends CSP theory by introducing ways to specify 
time properties in CSP descriptions. There is, however, (yet) no tool that can verify 
designs based upon Timed CSP.  

Time instant associated with an event occurrence is, in timed CSP, a non-negative 
real number, thus assuming a dense continuous model of time. This assumption 
makes the verification process complicated and not practical.  The difference 
between this approach and introducing the explicit time event (‘tock’) is 
comparable to the difference between continuous-time systems and their 
simulation on a computer using discrete time.  

The method is also not related to real-time scheduling. It defines the operational 
semantics for introducing time properties in CSP-based systems. Several essential 
extensions to CSP are the basis for making a system of proofs according to the 
ones that exist in basic CSP theory. Newly introduced operators include observing 
time, timeout operator, timed interrupt operator, time delay and evolution 
transition.  

Time can be observed at any event occurrence. The observed time can then be used 
in a following part of the process description as a free variable.  

 

The expression (1) specifies that the time of occurrence of event ‘ev1’ is stored in 
variable t1 and the time of occurrence of ‘ev2’ is stored in variable t2. Afterwards a 
function is called that displays the time interval between the occurrences of event 
‘ev1’ and event ‘ev2’. 

The timeout operator is a binary operator representing the time-sensitive version of 
the external choice operator of CSP. It is offering the choice between the process 
specified as its first operand and the process specified as second operand. In case 
when a timeout event takes place before the process guarded via the timeout 
operator engages in some external event, the control is given to the process 
specified as second operand.  

 

The expression (2) specifies that if the event ‘ev1’ is accepted within d time units 
from the moment it is offered, then the process will subsequently behave as process 
P1. Otherwise, it will behave as process Q.   
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The timed interrupt is a binary operator representing the time-sensitive version of 
the interrupt operator of CSP.  The main difference is that the event that triggers 
the interrupt is actually a timeout event. The process specified as the second 
operand will be executed after the timeout event signifies that the guarded process 
did not succeed to successfully finish its execution in the given time interval. As 
opposed to the timeout operator that uses timeouts to guard only a single event, the 
timed interrupt operator is guarding the completion of a process. If that process 
does not finish its execution in the predefined time interval, its further execution is 
abandoned. 

 

The expression (3) specifies that the process ev1->P1 will be granted a time 
interval of d time units to be performed.  When the given time interval expires, 
further execution of the process ev1->P1 is aborted (interrupted) and the process Q 
is executed instead. 

Introducing time delay (delay event prefix in Timed CSP) is a step from the world 
of ideal computing devices capable of infinitely fast parallel execution (as assumed 
by CSP) to the world of real target implementations. Time delay is used to extend 
process descriptions with the specification of execution times. In software 
implementations, the execution times get certain values depending on the 
processing node which executes a process. During this delay time, a process cannot 
engage in any event, that is, it acts as a STOP process. In fact, specifying the delay 
event prefix is equivalent to applying the timed interrupt operator on a STOP 
process as the first operand and the rest of original process as the second operand. 
A delay event prefix is specified by augmenting an event prefix arrow with a time 
delay value. Instead of a single number denoting a fixed execution time, it is 
possible to specify an interval for the expected time delay. In that case, a pair of 
values is grouped via square brackets. 

 

The expression (4) specifies that after the occurrence of event ‘ev1’, process P is 
for 10 time units unable to participate in any event. After the interval of 10 time 
units expires, process P will offer event ‘ev2’ to the environment. Then, after the 
event ‘ev2’ is accepted by the environment, it will take between 10 and 20 time 
units before process P can successfully finish its execution. 

Evolution transition is a way to display an observed delay between events in some 
particular execution of the process description. The expression (5) represents an 
execution in which the event ‘ev1’ has taken place 10 time units after it was 
initially offered to the environment, and where the event ‘ev2’ has taken place 20 
time units after it was initially offered to the environment.  
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4.1.3 Time specification in SystemCSP  

SystemCSP recognizes that operators introduced in TimedCSP are practical for 
describing time properties of systems. However, there is no real need to introduce a 
dense continuous model of time for modelling software and hardware 
implementation of processes. Therefore, in SystemCSP we start with the discrete 
notion of time as in (Roscoe, 1997) and introduce the basic event tock produced 
by the timing subsystem in regular intervals. Upon the tock event, we construct a 
process that implements a timing subsystem. This subsystem provides services 
used in the implementation of the higher-level design primitives that provide 
functionality analogue to the one defined by the timeout and the timed interrupt 
operators defined in TimedCSP (Schneider, 2000). In this way, it is possible to 
create designs using Timed CSP-alike operators, to describe them in basic CSP 
theory, making these designs amenable to formal verification equally as untimed 
CSP designs.  

Time specification in control flow diagram 

SystemCSP specifies time properties inside square brackets positioned in a 
separate node element or next to the element that they are associated with (see 
Figure 4-1). In Figure 4-1, the keyword time is used to denote the current time in 
the system. The occurrence of event ‘ev1’ is a point when time is stored into the 
variable t1. The time when the event ‘ev2’ occurs is stored into the variable t2.  

Execution times can also be visualized in SystemCSP diagrams. In SystemCSP, as 
in Timed CSP, the time delay is specified inside square brackets. Instead of 
specifying a single time delay value, e.g. representing a fixed or average execution 
time, it is possible to display a pair of values that defines a range (compared to 
timed CSP formula (4) in section 4.1.2). The range of possible execution times is 
bounded by the minimum execution time (minET) and the worst case execution 
time (WCET). In addition, often it is useful to keep track of the average execution 
time (avET). In that case, a triple is specified.  

The position of the time delay specification is related to the associated diagram 
element (e.g. next to the associated computation process block, or the prefix arrow 
replacing it, or next to the event that allows progress of the following computation 
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block). The specified delay can be just a number, in which case the default time 
unit is implied. Otherwise, the specification of time delay should also include a 
time unit. Time delay can also be specified as an expression or a variable that will, 
at run-time, evaluate to some time value.  

 
Figure 4-1 Specifying time requirements 

In addition to operators defined in Timed CSP, SystemCSP also introduces a 
notation for visual specification of time constraints. Those constraints are not 
directly translated to the CSP model of the system. The time constraints specify 
that certain events should take place before some deadline or precisely at some 
time. A deadline can be set relative to some absolute time or as a maximally 
allowed distance in time between the occurrences of two events.  Deadline 
constraints are independent of the platform on which they are executed. In Figure 
4-1 process P is scheduled to be triggered in precisely periodic moments in time 
with period nTs. The time constraint associated with the SKIP event in Figure 4-1 
specifies that its occurrence should take place strictly less then d time units after 
t1 moment in time, or, in other words, process P must finish successfully at most 
d time units after an occurrence of the event ‘ev1’. 

SystemCSP time diagrams 

The graphical representation of process P was in Figure 4-1 extended with 
specified time properties. In  Figure 4-2, the time scenario of one execution of 
process P is depicted using a SystemCSP time diagram.  
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Figure 4-2 SystemCSP time diagram 

Process names ‘P’ and ‘Env’ on most left side of the Figure 4-2, stand for process 
P from Figure 4-1 and for its environment. Arrows directed upwards indicate 
offered events (event ‘ev1’ being offered before time t1, and event ‘ev2’ being 
offered 10 time units after the occurrence of event ‘ev1’). Arrows directed 
downwards indicate accepted events (e.g. event ‘ev1’ is accepted at time t1 and 
event ‘ev2’ at time t2). Time constraints are specified inside square brackets above 
the related event or process entry label.  E.g. temporal constraint above process 
entry label of process P indicate that it is executed periodically with period Ts. The 
temporal constraint related to EXIT event indicates that it should take place before 
time moment equal to t1+d.  

Timing subsystem 

Figure 4-3 introduces one possible design of a timing subsystem. The purpose of 
this example is not to provide a ready-to-use design, but rather to illustrate the 
possibility for constructing a timing subsystem starting with the ‘tock’ event.  

The timing subsystem in Figure 4-3 contains several processes executed 
concurrently. 

HW_TIMER is a process implemented in hardware that forks instances of the 
hardware interrupt process, HW_INT, in regular intervals. The HW_INT process 
synchronizes with the CPU on the event tock, invoking in that way the timer 
interrupt service routine (TIMER_ISR process). TIMER_ISR increments the value 
of the variable time. TIMER_ISR than queries a sorted list of processes waiting 
for timeout events. It will use the ‘wakeup’ event to awake the processes in this list 
for which the specified timeout time is less than or equal to the current time. The 
awoken processes will be removed from the top of the list.  

The process CPU acts as a gate that can disable (event ‘int_d’) or enable (event 
‘int_e’) the timer and other interrupts. When interrupts are enabled, event ‘tock’ 
can take place and as a consequence the interrupt service routine TIMER_ISR is 
enabled. The case of occurrence of the ‘int_d’ event, as a next event only the 
‘int_e’ event is allowed and until then, the event ‘tock’ cannot be accepted, or in 
other words interrupts are not allowed to happen.  
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Figure 4-3 Timing susbsystem 

Processes using services of the timing subsystem can, via the TIMER process, 
either subscribe (via event ‘subscribe’) to the timeout service or generate a cancel 
event to cancel a previously requested timeout service. Since these activities are 
actually updating the waiting list, this list must be protected from being updated in 
the same time by TIMER and TIMER_ISR processes. That is achieved in this case 
via disabling/enabling interrupts (‘int_d’ / ‘int_e’ events). 

Watchdog Design Pattern  

The interaction view specified in Figure 4-4 illustrates the interaction between a 
user-defined component and the timing subsystem component via the watchdog 
interaction contract. The watchdog pattern is used to detect timing faults and to 
initiate recovery mechanisms.  

 
Figure 4-4  Interaction diagram: using a watchdog interaction contract 
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Figure 4-5 Watchdog design pattern 

The design pattern for the watchdog process (see Figure 4-5) relies on services 
provided by the timing subsystem. A user initializes the watchdog using the 
‘start_wd’ event, which results in a watchdog request to be notified by the timing 
subsystem when the specified timeout expires. In case when the watchdog user 
chooses to initiate the ‘hit’ event, the watchdog is disarmed. Otherwise, upon being 
notified by the timer subsystem that the specified timeout has expired (event 
‘wakeup’), the watchdog will initiate the ‘timeout’ event, notifying the user about 
the occurrence of timing fault.   

Timed interrupt operator 

The timed interrupt operator is simply a time-sensitive version of the interrupt 
operator of CSP. Its implementation, as depicted in Figure 4-6, contains the 
interrupt operator, and an additional events (‘start_wd’, ‘hit’ and ‘timeout’) for 
synchronization with a watchdog process.  
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Figure 4-6 Timed interrupt – implementation and symbol 

The closed dotted curve at the left-hand side of Figure 4-6 encircles elements that 
are providing the implementation of the behaviour specified by the timed interrupt 
operator. The right-hand side of Figure 4-6 abstracts away from those 
implementation details by providing a way to specify the timed interrupt operator 
as a basic element of the SystemCSP vocabulary. In fact, a pair of blocks with a 
timed interrupt symbol is used to determine the scope of the operator, similarly as 
brackets are used in CSP expressions. 

The interaction with the associated watchdog is hidden in the implementation of 
the timed interrupt operator. This interaction (interaction of watchdog from Figure 
4-5 and its user from Figure 4-6) starts with initialization of the watchdog via the 
‘start_wd’ event. The timeout value as specified in the timed interrupt operator is 
passed to the watchdog as a part of timeoutSpec specification. 

 When the guarded process (ev1->P in the example of Figure 4-6) finishes and the 
‘hit’ event takes place, the associated watchdog process will be disarmed. This 
scenario is depicted in Figure 4-7.  

The occurrence of the ‘hit’ event will disarm the watchdog (cancel ‘timeout’ 
event). The canceled ‘timeout’ event is indicated via dashed line in Figure 4-7, and 
a big vertical arrow is used to indicate that canceling this event is a consequence of 
the occurrence of the ‘hit’ event.  
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Figure 4-7 Timed interrupt -scenario 1 

If, however (see Figure 4-8), the ‘timeout’ event takes place, it will cause the 
guarded process to be aborted, and the process specified as the second operand 
(process Q in the example of Figure 4-6) is executed. In this scenario, the 
occurrence of ‘hit’ event is prevented by the ‘timeout’ event as indicated again 
using dashed lines for the event occurrence that will not happen, and vertical big 
arrow relating the cause and consequence. 

 
Figure 4-8 Timed interrupt - scenario 2 

Timeout operator 

The timeout operator is simply a time-sensitive external choice where one of the 
branches is a guarded process and the other one starts with a time event that will be 
initiated by the associated watchdog after the requested timeout expires. Following 
the ‘timeout’ event (see Figure 4-9), the process specified as second operator is 
executed. 

Figure 4-9 depicts the implementation and a symbol of the timeout operator on a 
simple example and its associated visualization using the symbol for the timeout 
operator. Instead of the letter d inside the timeout operator symbol, it is possible to 
use any number or variable representing time. The left hand-side of Figure 4-9 
depicts the implementation details encircled via the dotted curve, while the right-
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hand side introduces notation elements used to represent the timeout operator as 
one of the basic building blocks in SystemCSP. 

 

 

Figure 4-9 Timeout operator – implementation and symbol 

Again, two scenarios are possible. In first scenario, depicted in Figure 4-10, the 
‘hit’ event takes place before ‘timeout’ event, which results in the watchdog being 
disarmed. Difference compared to the analogue scenario for the timed interrupt 
operator (see Figure 4-7) is that in the case with timeout operator, only the event 
‘ev1’ needs to take place before ‘hit’ event.  Process P can take place any time 
later, since the used timeout operator guards only the occurrence of the event ‘ev1’. 

 
Figure 4-10 Timeout operator - scenario 1 
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In the second scenario depicted in Figure 4-11, the ‘timeout’ event will occur 
before event ‘ev1’. Consequently, ‘ev1’ and ‘hit’ events will not occur, and instead 
of process P, process Q will be executed. 

 
Figure 4-11 Timeout operator - scenario 2 

4.2 Real-time in the implementation of CSP-
based systems 

4.2.1 Identifying problems 

Origin of time constraints in implementation of control 
systems 

An embedded control system interacts with its environment via various sensors and 
actuators. Sensors convert analogue physical signals to signals understandable by 
the embedded control system (digital quantities in case of computer-based control). 
Actuators (motors, valves, and so on) perform a transformation in the opposite 
direction. The time pattern of the interaction between the control system and its 
environment is based on the time constraints imposed by the underlying control 
theory. The computer system implementing the embedded control system must be 
able to guarantee that the required timing properties will be met in real time.  

A control loop starts with sensor data measurements and finishes with delivering 
command data to the actuators. The time between two subsequent measurement 
(sampling) points is named sampling period and the time between a sampling point 
and the related actuation action is named control delay (Wittenmark and  Torngren, 
1995). Digital control theory assumes equidistant sampling and a fixed control 
delay time. On an ideal computer system, the control loop computation is 
performed infinitely fast. In reality, it takes a certain time that should be bounded. 
This gap between ideal and real computing devices reflects itself in a design choice 
between two possible patterns used in practice for ordering sampling and actuation 
tasks.  
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Figure 4-12  Sampling period and control delay (adapted from (ESI, 2006)) 

In the Sample-Compute-Actuate approach, depicted in upper part of Figure 4-12, 
the computation time is usually assumed to be negligible, implying that the 
computing device is close to the ideal one. A rule of thumb is that the behaviour of 
a control system will still be acceptable when this computation time is kept smaller 
then around 20% of the sampling period. Obviously this approach does not really 
guarantee that the system will always work as expected by control engineers. 
Especially in complex control systems that contain more than one control loop, or 
control loops closed over a network, the influence of a variable control delay 
becomes an important factor in the resulting behavior of the control system.  

The second approach, Sample-Actuate-Compute, takes into account the non-ideal 
nature of the computation devices. In this approach, depicted in the lower part of 
Figure 4-12, the control delay is fixed and usually set to be equal to one sampling 
period. By fixing the point of actuation to be immediately after the sampling point 
for the next iteration, two goals are achieved: first, actuators are prevented from 
disturbing the next cycle of the input sampling and second, the control delay is 
fixed, which allows compensating for it in the control algorithm using standard 
digital control  theory.   

From these temporal requirements imposed by control theory, real-time constraints 
are imposed on the implementation of control systems.  In both described 
approaches, a constant sampling frequency is achieved by performing the sampling 
tasks in precisely periodic points of time. In the first approach, the computation 
and actuation tasks need to get processor time as soon as possible, resulting in 
assigning them high priority value. The relative deadline of this task can be set 
using the aforementioned rule of thumb, to be 20% of the sampling period. In the 
second approach, as a consequence of fixing the actuation point in time, a hard 
real-time deadline is introduced for the computation task.  

Scheduling theories 

Real-time scheduling is nowadays a well-developed branch of computer science. It 
relies on the programming model where tasks communicate via shared data objects 
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protected from the simultaneous access via a locking mechanism. Good overview 
of the most commonly used scheduling methods is given in (Buttazzo, 2002). 

Time constraints are in real-time systems met by assigning different priority levels 
to the involved tasks according to some scheduling policy. E.g. in Earliest 
Deadline First (EDF) scheduling, the task with a more stringent time requirement 
will get a higher priority. In Rate Monotonic (RM) scheduling, a process with 
higher sampling frequency will have higher priority. A good comparison of all 
advantages and disadvantages of EDF and RM is given in (Buttazzo, 2005). 

An emerging way to schedule tasks in control systems is presented in (Cervin and 
Ekerz, 2006). There, it is demonstrated that, compared to EDF and RM, better 
performance of a control system can be achieved when priorities are dynamically 
assigned according to the values of some performance parameters inside the 
control system. 

Designs based on shared data objects as assumed in classical scheduling theories 
differ from designs based on rendezvous-based communication, as assumed in 
CSP. In communication via shared data objects, no precedence constraints (set of 
“before”/”after” relationships between processes specifying set of relative 
orderings of  the involved tasks) are introduced by the communication primitives.  

Fundamental mismatch between CSP and classical 
scheduling – communication induced precedence 
constraints 

A rendezvous synchronization point introduces a pair of precedence constraint 
dependencies. In Figure 4-13, the control flow specifies that process A must be 
executed before process C and process B before process D. In addition, due to 
rendezvous synchronization on event ‘ev1’, subprocess A must be executed before 
subprocess D and subprocess B must be executed before subprocess C. In the right-
hand side part of the figure, this is illustrated by dashed directed lines specifying 
precedence constraints from subprocess A to subprocess D (let us abbreviate this 
with A->D) and from subprocess B to subprocess C (B->C). Note that A, B, C and 
D are processes that can contain events and synchronize with the environment.  

 
Figure 4-13  Rendezvous communication introduces new precedence constraints 
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Figure 4-14 One-place buffer 

In Figure 4-14, the communication from process P1 to P2 is buffered via an 
intermediate buffer process. Precedence relations are depicted using the oriented 
dashed lines. In fact, as depicted in Figure 4-15, the precedence dependency from 
B to C (B->C) is gone and only the precedence dependency from A to D (A->D) 
still exists. Its cause is that the data must arrive to the buffer before it can be 
consumed. If the data flow direction for the buffered asynchronous communication 
was from P2 to P1, then only the B->C precedence constraint would exist. 

 
Figure 4-15  Precedence constraints for buffered communication 

If, however, communication is via shared data objects (see Figure 4-16 and Figure 
4-17), no precedence constraints are involved.  The reason is that the shared data 
object has the semantics of an overwrite buffer, where a consumer always 
consumes the last fresh value available. In fact, in this case, it is more appropriate 
to use the term reader instead of the term consumer. 
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Figure 4-16  Shared data objects 

Note that in case of shared data object communication, a process can still be 
blocked on waiting to access the shared data object. Scheduling theories do take 
into account this delay by calculating the worst-case blocking time. 

 
Figure 4-17  Precedence constraints in shared data object communication 

In Figure 4-13, usage of a rendezvous channel yields the possible orderings of 
subprocesses: (A || B) ->(C || D). The symbol A || B is used to abbreviate that A and 
B can be executed in any order, which is equivalent to composing them in parallel. 
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When an asynchronous channel is used, it is equivalent to erasing one of the two 
communication induced precedence constraints (depending on the direction of data 
flow as explained above) and the resulting set of possible orderings is larger, 
allowing e.g. ordering A->C->B->D (after A process P1 writes to the buffer and 
continues), which is not covered originally. When shared data objects are used, the 
set of possible orderings is even larger because another precedence constraint is 
removed. Thus, relaxation of precedence constraints, introduced by changing the 
type of the applied communication primitive, leads to extending the set of possible 
behaviours. 

Influence of assigning priorities on analysis 

In systems with rendezvous-based communication, the use of  priorities reduces the 
set of possible traces only in pathological cases (Fidge, 1993). For instance, 
consider the system given in Figure 4-18, with the assumption that the highest 
priority level is assigned to process P1, the middle one is assigned to P2 and the 
lowest priority level is assigned to process P3. This priority ordering can be 
implemented with a relative or absolute priority settings. In any case, the relative 
priority ordering is from P1 to P3. 

Priorities defined in this way will tend to give preference to P1i blocks compared 
to P2j blocks and also will give preference to P2j blocks compared to P3k blocks, 
but in fact the real order of execution can be any depending on the order of events 
accepted by the environment. Thus, the set of possible orderings of processes P1i, 
P2j, P3k and the set of related event traces is in the general case not reduced by a 
priority assignment.  

A PRIALT construct is in fact giving relative priorities to event ends participating 
in the same PRIALT construct. Those priorities are used only in the case when 
more then one event is ready. Again, the environment determines what events will 
be ready in run-time and thus as for PRIPAR, all traces are still possible.  

 
Figure 4-18  Some processes executed in parallel 
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From the discussion above, it is clear that assigning priorities to processes does not 
reduce the set of possible traces. Thus, to guarantee real-time, it should be verified 
that constraints are satisfied along any possible trace in the system. One reasonable 
approach for checking real-time guarantees is systematically replacing every 
composition with an equivalent automaton and associating execution times and 
deadlines with points in the control flow of that equivalent automaton. This 
approach is subject of discussion in Section 4.2.3. 

The conclusion is that structuring a program in the CSP way does influence 
schedulability analysis, because rendezvous-based communication makes 
processes more tightly coupled due to the additional precedence constraints 
stemming from the rendezvous synchronization. In rendezvous-based systems, 
priority of a process does not influence dominantly the order of execution. The 
actual execution ordering in the overall system is dominantly determined by the 
communication pattern encapsulated in the event-based interaction of processes. 
This interaction pattern inherent to the structure of the overall system, will due to 
the tight coupling on event synchronization points, always overrule the priorities of 
the involved processes. Assigning a higher priority to one process, engaged in a 
complex interaction scheme with processes of different priorities, does not 
necessarily mean it will always be executed before lower-priority processes. This 
situation can also be seen as analogue to the priority inversion phenomenon in 
classical scheduling theory. 

4.2.2 Classic scheduling approach 

The most straightforward approach to making CSP designs with real-time 
guarantees is using CSP-based design patterns that match the programming 
paradigm of classical scheduling.  

Priority inversion and using a buffer process to solve it 

In classic scheduling, priority inversion is a situation where a higher-priority task is 
blocked on a resource held by a lower-priority task, which has as a consequence 
that tasks of intermediate priority are in the position to preempt the execution of 
the lower priority task and in that way prolong blocking time of the higher priority 
task.  

Let us try to view the rendezvous channels in CSP-based systems as analogue to 
the resources shared between tasks in classic scheduling. In that light, waiting on a 
peer process to access the channel can be seen as analogue to the blocking time 
spent waiting on a peer task to free the shared resource. Viewed in this way, the 
system consisting of processes P1, P2 and P3 composed via a PRIPAR construct 
depicted in Figure 4-19 illustrates the priority inversion problem.   

Process P1 has to wait for process P3 to enable occurrence of event ev3 and in the 
meantime process P2 can preempt P3 and execute although its priority is lower 
than the one of P1.  
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Figure 4-19 Process execution is not dominantly influenced by priority 

Buffered channels are proposed in (Hilderink, 2005a) to alleviate this problem. 
There, a proof of concept is given by implementing the buffered channel as a CSP 
process. For this scheme to work, the priority of the buffer process is assumed to 
be equal to the priority of the higher-level process. However, a buffer process does 
not help when the process of higher priority (P1 in the example) is playing the role 
of a consumer and the process of lower priority (P3) is playing the role of a 
producer. In that case, the direction of the data flow introduces the precedence 
constraint from the event end in process P3 to the event end in process P1. Priority 
inversion in rendezvous-based systems is caused by precedence constraints leading 
from a process of lower priority to a process of higher priority. Using high-priority 
shared-data-object communication primitives between processes of different 
priorities eliminates the priority inversion problem in some cases. 

Absolute versus relative specification of priorities 

Classic operating systems offer usually a fixed range of absolute priority values 
that can be assigned to any of the tasks/processes. In occam and the CT library, the 
concept of PRIPAR construct is introduced that allows one to specify relative 
priorities instead of absolute ones. The index of a process inside a PRIPAR 
construct determines its relative priority compared to the other subprocesses of the 
same construct. A program shaped as a hierarchy of nested PRIPAR and PAR 
constructs, results in an infinite number of possible priority levels. This approach 
also offers more flexibility, since new components can be added on proper places 
in the priority structure without the need to change priorities of the already existing 
components.  

However, while absolute priority ordering guarantees that any two processes are 
comparable, this is not the case in PAR / PRIPAR hierarchies. Let’s consider the 
following example: 

PAR 
  PRIPAR 
    A 
    B 
  PRIPAR 
    C 
    D 
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The two PRIPARs define A as of having higher priority than B and C having 
higher priority than D. However, no preference is given to any when for instance B 
is compared to C, or A to D. Relation between them is PAR, and not PRIPAR. 
Giving no preference is the same as assuming they are of equal priority. The 
attempt to deduce strict ordering fails in the described case: 

priority(C) = priority(A) > priority(B) = priority(D)  
priority(D) = priority(A) > priority(B) = priority(C)  
 
If only PRIPARs were used, there is no confusion. In fact, the hierarchy of 
PRIPARs is like collapsing a big sorted queue into smaller subqueues that can 
further be decomposed in subsubqueues. But with a PAR being a parent of 
PRIPAR constructs, the priority ordering problems appear. 

The question is whether the relative priority ordering schemes, as the ones of 
occam-like PRIPAR constructs, can be efficiently used in combination with the 
classical scheduling methods, for instance RM and EDF. 

To be able to apply any priority-based scheduling method in a way that will avoid 
introducing priority inversion problems, as concluded in the previous section, 
processes of different priorities should be decoupled via consistent usage of shared 
data objects. 

RM 

The problem with RM scheduling is that it is not compositional. This means that if 
one composes two components with inner RM based schedulers, the resulting 
component does not preserve real-time guarantees. Thus, it would not be possible 
to define a PAR of components on top level and to have PRIPAR based RM 
schedulers inside each of them. If, however, a hierarchy consisting only of 
PRIPAR constructs is used to implement the RM priority assignment on global 
level, this hierarchy can be seen as dividing one big queue into a hierarchical 
system of subqueues, where strict ordering is preserved. Theoretically, for large 
queues, a hierarchical organization can significantly increase the speed of 
searching. In practice, however, systems usually do no need more then 8 or 16 or 
32 different priority levels, which allow efficient implementation based on a single 
status register of size 8, 16 or 32 bits and dedicated FIFO queues for every priority 
level.  In fact the real advantage of such hierarchical tree of priority levels is that it 
is very flexible for extension allowing new priority levels to be inserted without 
disturbing the existing ones. 

The conclusion is that in principle, by using global priorities or strict priority 
ordering defined by relying only on PRIPAR constructs, it is possible to apply the 
RM scheme in CSP based systems. Key precondition for this is that 
communication between components with different priorities is decoupled via 
shared data object communication primitives. 

EDF 

Implementing an EDF scheduler is tricky with fixed global priorities because the 
actual importance of a task is proportional to the nearness of a deadline and this 
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nearness is a factor that keeps changing in time. Trying to assign a global priority 
to a process whose importance in fact changes with time is unnatural. Actually 
scheduler framework built on top of a framework providing the occam-like relative 
priorities could result in a very natural solution for implementing EDF scheduler. 
For instance, one can divide a certain next part of the time axis into several time 
windows (see the right-hand side of Figure 4-20).  

 
Figure 4-20  EDF scheduler 

Everyone of those time windows is associated with a single PRIPAR construct 
(compare the left-hand side and the right-hand side of Figure 4-20). The top level 
PRIPAR construct is used to sort the nested PRIPAR constructs, associated with 
time windows from near future, according to their ordering in time. Tasks with 
time constraints are then inserted in the PRIPAR construct related to the time 
window where their deadlines fall in. E.g. tasks C and D  have deadlines falling 
into the interval (t1, t2) and are thus in upper part of Figure 4-20 mapped onto the 
second PRIPAR construct. 

The processes far away in the future and out of scope of any time window will be 
kept in a separate queue. After all tasks associated with the first time window are 
processed, this PRIPAR construct is removed from the top-level PRIPAR 
construct. The removed PRIPAR construct is then reused. It is associated with the 
first previously not mapped time interval. The non-allocated processes from the 
far-future queue that fall into that time window (G and H in Figure 4-20) are now 
mapped onto it and the associated PRIPAR is now added to the top-level PRIPAR 
as the least urgent time window (lower part in Figure 4-20).  

For this scheme to work, again, there should be no precedence constraints among 
tasks and thus rendezvous or buffered communication is not allowed between 
scheduled tasks (can exist inside each of them though) or it should be taken into 
account by deriving intermediate deadlines as in EDF*. 

The described approach for implementing an EDF scheduler is based on relative 
priority orderings. However, relative priority ordering is in described framework 
used for a generic implementation of the scheduler and not as a way to specify 
priorities of user- defined processes in the application, as it was the case in occam. 
In order to apply this scheme in practice, the application itself should specify 
deadlines and not PRIPAR constructs or priorities. 
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A problem with using relative priorities based on PRIPAR / PAR constructs, is that 
it hard-codes priorities in the design, while a design of an application should be 
independent of priority specification. A priority level is related both to the time 
requirements, as specified in an application, and the time properties of the 
underlying execution engine framework. A choice of preference is to design 
applications without introducing priorities and to postpone the process of assigning 
absolute priorities or deadlines (for EDF based scheduling) to the stage of 
allocation, where it is suited more naturally.  

Thus, the recommendation is not to use occam-like relative priority orderings 
based on PRIPAR constructs. PRIALT on the other hand makes sense 
independently of the scheduling method used. 

EDF* 

In classical scheduling techniques, precedence constraints can be specified between 
tasks and special extensions exist for some scheduling theories (e.g. modified EDF 
(EDF*) for EDF) to enable them to deal with precedence constraints. EDF* takes 
precedence constraints into account by deriving the deadline of a task from the 
WCETs and deadlines of the following tasks.  

When rendezvous channels are seen in the light of the introduced precedence 
constraints, the EDF* scheduling algorithm is applicable to rendezvous based 
systems. In applying EDF* to rendezvous based systems, calculation blocks can be 
considered to be schedulable units. A deadline of a calculation block is updated to 
the minimum value calculated upwards of any trace starting with some 
fundamental deadline and leading upwards via the chain of precedence constraints 
to the current calculation block. The value is calculated starting with the time of 
the fundamental deadline and substracting the WCET of every code block passed 
while going upwards the trace towards the block whose deadline is being derived 
in this way.  

Design with rendezvous channel communication, convert 
them to shared data objects when necessary 

Regarding solving the priority inversion problem of rendezvous-based system by 
relaxing the used type of communication primitive, Hilderink (2005a) states that a 
deadlock-free program with rendezvous channels will still be deadlock-free when 
rendezvous channels are substituted with buffered channels. This is in fact 
intuitively explainable if we realize that deadlock is in fact a circle of precedence 
constraints (some being due to event prefix and sequential composition operators 
and some due to rendezvous communication). Since substituting rendezvous 
channels with buffered or shared data objects removes some of precedence 
constraints, this can remove some deadlock problems, but cannot introduce new 
ones.  

Thus, a convenient design method could start with a design based on rendezvous 
channels. Such an initial design is amenable to deadlock checking. After allocation 
and priority assignment, all rendezvous channels between processes of different 
priorities can be replaced with shared data objects allowing the usage of classic 
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scheduling techniques, while preserving the results of deadlock checking. 
However, this approach may not always be feasible. Note that relaxing the 
precedence constraints associated with rendezvous channels results in an extended 
set of behaviours by including the possible behaviours that were not formally 
checked. As a consequence, a new implementation that was produced in this way 
might not anymore be a refinement of the initial specification. For conformance of 
such an implementation to its specification both its traces and failures must be 
subsets of the traces and failures defined in the specification.  Chapter 5 presents a 
design pattern for structuring different layers in complex control systems. 

4.2.3 Event based approaches  

If however, the intention is to use rendezvous-based channels/events as basic 
primitives then a distinct scheduling theory must be developed. The topic of 
achieving real-time guarantees in systems with rendezvous synchronized 
communication is a research field that still waits for a good underlying theory.  The 
text here proposes two possible directions of searching for the solution. 

Event-based scheduling 

Figure 4-19 illustrates that attaching priorities to processes that communicate via 
rendezvous channels influences the behavior of rendezvous-based systems much 
less then expected.  

Instead of trying to apply classic scheduling methods, it is possible to admit the 
crucial role of events in CSP based systems and assign priorities to events instead 
of to processes. Deadlines can be seen as time requirements imposed on events or 
on distances between some events. Furthermore, while priority of processes is local 
to a node, the priority of an event is still valid throughout the whole distributed 
system. Such event-based scheduling seems to promise a way to get better insight 
and more control over the way the synchronization pattern influences the execution 
and overrules the preferred priorities.  

Section 4.2.2 has introduced an analogy between the priority inversion problem in 
classical scheduling methods and the analogue problem in rendezvous based 
systems. In classical scheduling, the standard solution to the priority inheritance 
problem is that a lower-priority task holding the resource needed by the higher-
priority task gets a temporary priority boost until it frees the resource. If we apply 
this analogy to a rendezvous channel as a shared resource, then the peer process is 
holding the resource as long as it is not ready to engage in rendezvous.  Thus to 
avoid priority inversions, the complete control flow of the lower-priority task, that 
is taking place before the event access point, should get a priority boost. The 
‘before’ relation is formally expressed via precedence constraint arrows. Thus, 
starting from some event end, the priority of all events ends upwards the 
precedence constraint arrows should be updated to be of equal or higher value. 
Keep in mind that as explained in section 4.2.1, extra precedence constraints are 
introduced on every rendezvous synchronization point. Thus, the process of 
updating priorities propagates through rendezvous communication points to other 
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processes. Eventually, a stable set of priorities is reached. This set of priorities is in 
the general case different from the initially specified set of priorities.  

The user can set an initial set of preferred priorities to some subset, or to all event 
ends in the program. For instance, one can initially assign priorities to event ends 
by assigning priorities to processes, which can for instance result in automatically 
associating the specified process-level priority with every event end in the process. 
Those preferred values are used as initial values in the aforementioned procedure 
of systematically updating priorities of event ends. The set of priorities obtained by 
applying this algorithm reveals a realistic or an achievable set of values after the 
synchronization pattern is taken into account. In this process, priority inversions 
are inherently eliminated. 

In the example of Figure 4-19, in event-based scheduling, event ends initially get 
priorities according to the priority specified for their parent processes. Due to 
precedence constraints all event ends participating in the same event need to get 
the same value, which is equal to the highest priority present in any of the event 
ends.  Thus, events ‘ev3’ and ‘ev2’ would get the priority of process P1, and event 
‘ev1’ the priority of process P2. However, since a precedence constraint ev1->ev2 
exists, the priority of the event ev1 needs to be readjusted in order to avoid priority 
inversion as described above in the procedure for realigning priorities of events. 
Thus, although the preferred priorities of process P1, P2 and P3 are different, their 
execution pattern results in all events ‘ev1’, ‘ev2’ and ‘ev3’ having the same 
priority. The event-based scheduling approach uncovers realistic, priority-inversion 
free, values of priority levels, achievable with the given design of synchronization 
pattern between processes. 

The procedure is not so convenient for application in systems with a lot of 
recursions. There are two types of recursive processes: time-triggered recursion 
and ordinary recursion. In ordinary recursion there is a cycle and as a result all the 
events in the process have the same priority. The time-triggered recursions are 
considered new instances of tasks with new deadline values and there is no need to 
perform a circular update of priorities. 

Equivalent automaton 

From the discussion in Section 4.2.1, it is clear that assigning priorities to 
processes does not reduce the set of possible traces. Thus, one reasonable approach 
for checking real-time guarantees is treating CSP processes as automata and 
systematically replacing every composition of CSP processes with an equivalent 
automaton and associating execution times and deadlines with points in the control 
flow of the equivalent automaton. In (Ouaknine and Worrell, 2003), it is in fact 
stated that timed CSP descriptions are closed-timed epsilon automata. 

In order to simplify the reasoning, in this discussion we restrict the analyzed 
models to be free from the non-deterministic and too complex primitives: systems 
are considered to be free from the usage of the internal choice operator and of 
those cases of the external choice operator that cannot be reduced to the guarded 
alternative operator. Internal choice is normally used as an abstraction vehicle and 
as such, it does not exist in final designs. External choice that cannot be replaced 
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with a guarded alternative operator is another situation that is rarely used in 
practice and difficult to implement and also not straightforward to describe in 
automata representation. The decision here is to restrict final designs to be free of 
those two special cases. If the set of CSP operators is restricted in this way, the 
processes constructed using events and this restricted set of operators can be 
reasoned about using classic automata theory.  

Automata theory (Cassandras.and Lafortune, 1999) defines how to make a parallel 
composition of two automata. The example for this procedure is depicted in Figure 
4-21. The start state of the equivalent automaton representing the composition is 
the combination of the initial states of the composed processes. In Figure 4-21, 
process P1 can initially engage in event ‘a’ and process P2 in event ‘b’. Since event 
‘b’ must be accepted by both P1 and P2, initially only event ‘a’ is possible. Event 
‘a’ will take the first automaton to state 2, while the second automaton will stay in 
state 1. Thus, starting from the initial state (1, 1) and following the occurrence of 
the event ‘a’, the composite state (2, 1) is discovered (see Figure 4-21). 

For every reachable composite state, all possible transitions are checked (taking 
into account when synchronization is required and when not). The resulting 
composite states are mapped onto the equivalent automaton. After a while all 
transitions either lead to already discovered composite states or to the end state 
(when both participating processes are in their end states) if any.  

 
Figure 4-21  Construction of equivalent automaton 

Some composite states are not reachable and thus not part of the equivalent 
automaton representing the parallel composition. In principle, composing, in 
parallel, a process containing 3 states with a process containing 4 states, yields a 
process with all 3*4 combinations possible. This is in fact the case whenever 
processes are composed in interleaving parallel. In non-interleaving parallel 
constructs, due to the involved synchronizations, the number of states is less.  

A parallel composition can be seen as a way to efficiently write down complex 
processes that contain a number of states. Seen in that light, the introduction of the 
Parallel operator allows decomposing complex processes on entities that are 
smaller, focused on one aspect of the system and simpler to understand.  
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The definition of the parallel composition is in CSP identical to the one in 
automata theory. The external choice of CSP viewed as automata is equivalent to 
making a composite initial state that is offering the set of initial transitions leading 
to the start states of the involved subprocesses and subsequently behaving as those 
subprocesses. The sequential composition is trivially concatenating the involved 
automata. If every CSP process is viewed as an automaton, creating an equivalent 
automaton representing a complete CSP-based application is a straightforward 
thing to do. The equivalent automaton defines all traces (sequences of events) 
possible in the system. Thus, it can be used as a model against which one can 
check different properties of the system – e.g. checking for deadlock/livelock 
freedom, checking the compliance of implementation to the related specification 
(refinement checking). For instance, an application has a potential for a deadlock 
situation if there is a state (not the end state) from which no transition is leaving. 
The refinement checking is about testing if a set of traces and failures defined by 
an automaton representing some implementation is a subset of the set of traces and 
failures defined by an automaton representing the related specification.  

In Figure 4-22 SystemCSP based visualization of the equivalent automata from 
Figure 4-21 is given. The main difference of a SystemCSP representation 
compared to the automata way of visualizing CSP processes is that instead of on 
states, the focus is on events. The procedure of constructing an equivalent 
automaton is exactly the same. 

 
Figure 4-22  SystemCSP with recursion labels makes traces more obvious 

Focusing on events ensures that traces are more easily observable, especially if in 
SystemCSP, instead of the lines going back to the revisited states, as is always the 
case in automata, usage of recursion labels is enforced. Systematic usage of 
recursion labels will naturally separate subtraces that are repeated and thus create 
immediately observable trees of possible event traces. Inspection of Figure 4-22 
shows that possible traces in the single ‘Loop’ iteration of the equivalent 
automaton are <’a’ , ‘b’ , ‘c’ > and <‘a’ , <’b’ , ‘a’ , ‘c’> n, ‘b’ , ‘c’>. The actual 
trace taken is dependent on the readiness of the environment. Recursion labels 
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define sequences that are repeated and the IF choice and guarded alternatives 
divide traces into several subtraces. 

Mapping time properties to equivalent automata 

The next step is to extend the description of an equivalent automaton with time 
properties in a way that it will allow us to perform efficient analysis. The idea is to 
extend CSP descriptions with time properties in such a way that the mapping to the 
equivalent automaton preserves their meaning.  

After specifying execution times and time constraints in the two subprocesses 
composed in PAR, time properties are mapped onto the equivalent automaton. If 
that can be done, then the analysis of time behaviour can be performed on the 
constructed equivalent automaton. If we are able to map the time properties from a 
pair of parallel composed processes onto their composition, then the same can be 
done hierarchically in bottom-up manner yielding at the end an executable timed 
model of complete application.  

 
Figure 4-23  Specifying Execution times of code blocks 

Analysis of time properties should be performed without the need to perform code 
block calculations. In such analysis, code blocks are substituted with their 
execution times and sums of execution times along all possible system traces are 
inspected with respect to the specified time constraints.  

 Note that execution times are in Figure 4-23 associated with event-ends. The 
execution times of the calculation blocks can be seen as related to the event ends 
immediately preceding them, that is, to event ends associated with events whose 
occurrence will allow every participating process to progress for the amount of 
execution time spent on the next calculation block.   

The execution time of a process at a certain point of its execution is the sum of 
execution times along the path that brought the process to the current point. In 
other words, it is the sum of progress (expressed in time units) allowed by all event 
ends along the trace that the process is following.  
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Figure 4-24  Equivalent Event Machine 

The basic idea is that an event occurrence allows further progress of processes 
involved in that event occurrence. The initial event in process P1 (see Figure 4-23) 
allows process P1 to progress further in execution for 3 time units and offers event 
‘a’ to the environment. The initial event in P2 allows process P2 to progress in 
execution for 2 time units and then offer event ‘b’ to environment. Thus, the 
composite initial event allows the involved subprocesses to progress for (3, 2) time 
units, where the first number maps to the event end in the first subprocess and the  
second number to the event end in the second one (see Figure 4-24). Event ‘a’, 
once it is accepted by the environment will allow progress of P1 for 5 time units 
and P2 for 0 time units since P2 is blocked waiting on its environment (including 
P1) to accept event ‘b’. Thus in the composite automaton, event ‘a’ taking place 
following the initial event, will allow (5, 0) progress of the involved subprocesses. 
The subsequent occurrence of event ‘b’ will allow progress of both P1 and P2, for 
3 and 4 time units respectively, which is in Figure 4-24 expressed by associating 
the ordered pair (3, 4) with the event ‘b’. 

Note that in general, when a hierarchy of processes is resolved, it is not a good idea 
to capture progress of subprocesses as n-tuples. In a prospective analyzer 
implementation, since execution times are related to event ends, bookkeeping of 
allowed progress would be kept in the participating event ends and not in the n-
tuples, containing progress for all composed subprocesses. Different occurrences 
of the same event in a composite automaton can in fact have associated different 
progress values. Essentially, execution times are expressed as the amount of pure 
computation progress that occurrence of an event at immediatelly preceding event-
end point allows. 

Note that the assumption in this example is that the environment is always ready to 
accept events. In fact, when the equivalent automaton is constructed hierarchically 
in a bottom-up approach, it will eventually include the complete system with all 
events resolved internally.  

Unpredictable (in the sense of time) occurrences of events from the environment 
can of course only be analyzed for a certain chosen set of scenarios. For every 
scenario, the environment can also be modelled as a process with defined time 
properties and composed in parallel with the application to form the complete 
system. 
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Figure 4-25  True parallelism 

The actual time of event occurrences depends on the allocation. For the equivalent 
automaton of Figure 4-24, in Figure 4-25 the true parallelism case is depicted, and 
in Figure 4-26  a shared CPU with P1 having higher priority and a shared CPU 
with P2 having higher priority. The same equivalent automaton keeps information 
necessary to unwrap actual timings of the involved events in all 3 cases. 

 
Figure 4-26  Shared CPU 

In the case of true parallelism, components P1 and P2 are initially allowed to 
progress 3 and 2 time units respectively. Then event ‘a’ allows component P1 to 
progress another 5 units. Both processes synchronize on event b, meaning that their 
times must be same at the rendezvous point. Thus the time of this rendezvous point 
is max(3+5, 2+0)=8. Event b will allow components P1 and P2 to progress 3 and 4 
units of time respectively. Under the assumption that the environment is always 
ready to accept events, event a will be accepted at time 8+3=11 and event c at time 
8+4=12. This scheduling pattern is depicted in Figure 4-25.  

Three independent timed models can be made by using in the analysis either the 
minimum, average or worst-case execution times. Using only the average 
execution time is a good first approximation of the system’s behavior. Execution 
times are dependent on allocation of components to processing nodes and can in 
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fact be measured or simulated for different targets and stored in some database. A 
prospective tool should be able to keep track of allocation scenarios and to 
simulate/analyze/compare effects of the different execution times in different 
allocation scenarios.  

4.3 Conclusions 
In this chapter, ways to introduce time properties were defined in the scope of the 
SystemCSP design methodology. The specification of time properties was deduced 
by merging the ideas from previous work in the CSP community (Roscoe, 1997; 
Schneider, 2000). Implementation of CSP-based systems with real-time properties 
was then investigated. Two major directions were observed for achieving real-time 
behavior: (1) introducing design patterns that can fit CSP-based systems into 
requirements of existing scheduling theories and (2) relying on constructing 
distinct scheduling theories for CSP-based systems.  Comparing the two indicates 
is that the first proposed direction enables immediate implementation, while taking 
the second direction requires additional research. Thus, a recommendation for a 
prospective tool used for editing SystemCSP designs is to use the combination of 
proposed design patterns and classical scheduling theories to provide real-time 
guarantees. In long term, it is suggested to investigate the second approach. Reason 
is that transforming rendezvous channels to shared data objects removes some 
precedence constraints, which results in extended set of possible behaviour, and in 
practice means that refinement property might not hold after such transformation. 
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5 Design patterns in SystemCSP  
Enter a mold without being caged in it. Obey the principles without being 
bound by them. Don't get set into one form, adapt it and build your own, 
and let it grow, be like water. Now you put water in a cup, it becomes the 
cup; You put it into a teapot it becomes the teapot.  

Bruce Lee 

 

In this chapter, a set of SystemCSP design patterns is introduced with the following 
intentions: 

• to make the initial body of reusable building blocks useable in 
SystemCSP based designs. The choice of designed reusable building 
blocks is geared towards the application area of component-based, safety-
critical control systems. Introduction of the reusable design patterns 
extends the vocabulary of the notation by introducing set of more complex 
primitives built upon the basic ones. Using such a higher-level language 
primitives raises the abstraction level of the design process and is 
expected to result in reduced software design effort, reduced costs, and in 
simplified expression of more complex designs. In fact, this introduction 
of patterns is a way to enhance the scalability of the notation. This is 
especially the case when a graphical symbol is introduced to represent a 
pattern. In some cases, intuitive symbols are introduced, and in others the 
introduction of symbol is only suggested. 

• to illustrate the usage of interaction contracts as reusable units in the 
practice of software development. The advantage of using interaction 
contracts, as a way to specify interactions among components, is that they 
are as reusable as components, and can be analyzed in isolation from the 
actual system and the set of actual components participating in the 
specified interaction. Most of the design patterns introduced in this 
chapter are presented in the form of interaction contracts.  

• to obtain insight that can be used as a feedback to further improve the 
notation.    

• to test the capabilities of the SystemCSP language when used as a vehicle 
in visualizing and structuring concurrency in interaction based systems. 
The evaluation of the notation is done according to the criteria listed as a 
part of the problem statement in section 1.3.1. Expressivness and  
readability are the key features expected of the notation that can be 
evaluated using this chapter. 

The methodology used here is to describe every pattern in structured way.  First, a 
brief explanation of the key purpose and ideas of the pattern is presented. In that 
way, the design problem is introduced.  Second, the design is given in the form of a 
SystemCSP diagram and the associated textual description. Third, a brief 
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discussion is given containing remarks with issues specific to the described pattern. 
Those remarks can be, for instance, comments on the usage, or comments on the 
need for introduction of some additional notation elements, or introduction of a 
symbol for given pattern, or a comparison with similar patterns in other 
component-based frameworks. The remarks contain, when convenient, comments 
about scalability, expressiveness and readability properties.  

Expressiveness is in fact a criterion that should evaluate how easy is it to design 
interaction for given descriptions of the key objective and behavior of a pattern. 

Readability can be evaluated by the speed and the level in which SystemCSP 
diagram can be correctly interpreted knowing the problem statement, but without 
reading the associated textual description of the diagram. 

Design patterns are grouped in several sections. Section 5.1 introduces basic 
communication patterns. Section 5.2 defines some patterns useful in component-
based software development. Section 5.3 introduces a possible way to structure 
layers in a control system. Section 5.4 presents a set of fault tolerance design 
patterns. Section 5.5 briefly states conclusions. 

5.1 Communication patterns 
The purpose of this section is to design a set of SystemCSP interaction contracts 
representing commonly used communication primitives. 

Design patterns – goals and ideas 

In the shared memory pattern, the shared part of memory needs to be protected 
from simultaneous access by multiple users. Shared memory can be structured in 
any way, e.g. it can contain complex data structures. The ownership of shared 
memory is given to the process that locks it.. Other processes wanting to access the 
memory need  to wait until the process holding it unlocks it.  

The shared variable pattern provides the mutual exclusion in accessing a single 
variable by multiple readers and multiple writers.  

In the one-place buffer pattern, some data is placed in a buffer by a producer, and 
stays there until it is consumed by a consumer. This is different from the shared 
variable pattern where the data value is present in variable until it is overwritten by 
a new value.  

FIFO buffer is a buffer capable to store multiple data chunks, which are consumed 
in order of storing. In that way, it provides more flexible synchronization in case 
when frequencies of producers and consumers accessing it are varying in 
time. FIFO buffer discussed here is assumed to have a fixed storage size. Thus, it 
can happen that such a buffer is filled (no space available) and not able to receive a 
next chunk of data. It can also happen that buffer is empty (no data available) and 
thus not able to deliver data to a consumer.  
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Design description 

The shared_memory interaction contract (see Figure 5-1) is designed to initially 
allow a user to lock the shared memory using ‘lock’ event. After the memory is 
locked, the next event that the contract offers to its environment is to unlock 
memory (‘unlock’ event).  It is assumed that the same user that has locked the 
memory will unlock it. Unlocking the memory means that the current user has 
finished the current session of data access and update and that a next user is 
allowed to take ownership over the shared memory.  Assumption is that user 
processes will always invoke events ‘lock’ and ‘unlock’ in this sequence. This is 
described with the role user in the contract. Additional care should be taken that 
user processes do not synchronize among themselves on ‘lock’ and ‘unlock’ 
events. 

In the shared_variable interaction contract (see Figure 5-1), the guarded 
alternative element allows either the ‘read’ or the ‘write’ event to be accepted, 
allowing in that way, at any point of time, access to either one reader or one 
writer.   

 
Figure 5-1  Communication patterns  

The One-place_buffer interaction contract (see Figure 5-1) is initially ready to 
receive data from producer (offering a ‘put’ event). When ‘put’ event takes place, 
data is transferred from the producer into the buffer. The contract manager is then 
ready to deliver the data to the consumer (offering a ‘get’ event). After the data is 
consumed (occurrence of the ‘get’ event), the one-place buffer is again ready to 
accept new data from the producer (offering ‘put’ event). 

In guarded alternative of the FIFO_buffer interaction contract, events ‘put’ and 
‘get’ are guarded with logical guards ‘spaceAv’ and ‘dataAv’ representing 
respectively the facts that data can be put to the FIFO only when there is space, and 
that data can be consumed out of FIFO only if it is available.  
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Remarks 

Multiplicity of specified roles is indicated with multiple interface ports (most often 
visualized on top of each other) associated with role in the interaction contracts. In 
a shared memory contract, assumption that users do not synchronize among 
themselves on ‘lock’ and ‘unlock’ events is not made explicit on the diagrams. A 
way to visually specify that assumption is to draw interleaving parallel binary 
relationship of the role user with self (see Figure 5-2). That is analogue to 
associations relating a UML class with itself, and carrying the meaning that the 
specified relationship relates instances of the class.  

 
Figure 5-2 Shared memory contract with specified compositional relationships 

Note that specifying interleaving parallel binary relationship between roles does 
not mean that it will still hold among components implementing the roles. 
Implementations of the roles need to be interleaving with respect to events relevant 
for those roles (‘lock’ and ‘unlock’ in this case), but can synchronize (e.g. by 
participating together in some other interaction contracts) on some other events not 
relevant for the roles (any event in their alphabets except ‘lock’ and ‘unlock’). 

Often, visualizing compositional relationship additionally clutters the intended 
message of the diagram. Therefore, visualization of compositional relationships 
among participants in contract definition is optionally visualized, e.g. when it 
carries additional information important for proper understanding of the interaction 
contract. When the relationship is not visualized it is still expected to be specified 
in properties of the contract. The trade-off made here is between expressiveness 
and readability of the diagram. Since the property left out from the design diagram 
is expected to be specified in a property page of the contract in a prospective tool, 
unambiguous interpretation is not sacrificed by leaving compositional relationships 
out of the diagram. 

The Shared_variable contract allows participation of multiple writers and 
multiple readers. At any moment of time, only a single writer or reader can engage 
in interaction with this shared variable interaction contract. Again, the assumption 
is that writers do not synchronize among themselves on ‘write’ events, and that 
readers do not synchronize among themselves on ‘read’ events. The same holds for 
multiple producers and consumers not synchronizing among themselves on ‘put’ 
and ‘get’ events in the One-place_buffer and and FIFO_buffer interaction 
contracts. 
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In all interactions in all presented communication patterns, initiative is taken by the 
side using the contract, meaning that the event-ends inside interaction contract 
managers can be depicted using type EventAccept and event-ends in the roles using 
the event-ends of EventSync type. However, a choice taken in three of four patterns 
is to use basic Reader (event-end circle with question mark inside) and basic 
Writer (event-end circle with exclamation mark inside) channel-end symbols in 
order to focus on the direction of data communication.  Sometimes, however, it is 
equally important to emphasize both which side can initiate and which side can 
only accept events, and to emphasize the direction of the communication. In such 
cases, it is suggested to use EventSync and EventAccept event-ends, since the 
direction of data communication is also specified in the event labels. In fact, 
Reader and Writer type of event-ends are redundant and exist in order to increase 
readability of the information about the direction of data communication for 
unidirectional channels.   

Recommendation is to invent intuitive symbols representing the presented and 
other relevant communication design patterns in order to raise the level of 
abstraction in design process.  

5.2 Patterns related to components 

5.2.1 Inter-component function calls 

Design patterns – goals and ideas 

Inter-component function calls are usually classified as synchronous or 
asynchronous. A Synchronous function call assumes that caller is blocked after 
making the call waiting for the function to be performed and results returned to it. 
In an asynchronous function call, a caller will send a function call request and 
continue working on something else. The results will be delivered to the caller 
asynchronously, e.g. by using a callback function.  

In function calls, arguments can be passed by value or by reference. Passing 
argument by value means that the object passed as argument is used to initialize the 
local object inside function definition. Changes in such a local copy will not 
change the original variable. Passing arguments by reference means that the 
function will actually work on the original object without creating a local copy. 
Thus, the function has the right to update the value of variables passed by 
reference. 

Design description 

In Figure 5-3, SystemCSP design patterns for implementing synchronous inter-
component function call is depicted.   
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Figure 5-3  Synchronous inter-component function call 

Design pattern given in Figure 5-3, is analogue to synchronous function call 
because control flow of the caller is blocked on the call until function is performed 
and results are returned.  Client uses channel ‘funReq’ to send parameters par1 
and par2 to the function provider. The function provider performs calculation and 
returns back the result (event ‘funRes’). In this case, also the first parameter of the 
function call is returned. Thus, the function provider is allowed to update the value 
of the first parameter. This is in fact equivalent to passing the parameter par1 by 
reference and par2 by value. 

 
Figure 5-4 Asynchronous inter-component function call 

In Figure 5-4, a way to perform an equivalent of asynchronous function call is 
depicted. The caller can do something else instead of waiting for the results. This is 
achieved by activating (via event ‘initCallback’) a dedicated process 
(callback_proc) that does execute concurrently with control flow that is making 
the function call. This dedicated callback process will wait for the results on the 
behalf of the caller. It can be composed in parallel with the normal control flow of 
the component.   
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Remarks 

Obviously, two channels are used for implementing an inter-component function 
call. However, logically this pair of channels makes one interface unit. Also, while 
channels are symetrical, function call ports have provided and required side. From 
that reason, a symbol for function port is introduced (see  Figure 5-5 and Figure 
5-6).  

A visual distinction of function port compared to event/interface ports is the 
presence of the function name followed by a pair consisting of opened and closed 
brackets resembling in that way function declarations in modern programming 
languages. In fact, function name can be left out, but the pair of brackets marks the 
interface port as function port.  

 In addition, the synchronization connection that relates two function ports, is 
adorned with ‘sync’ or ‘async’ label, specifying in that way whether the control 
flow of the caller is blocked until the function is performed and the result is 
returned.  

The distinction between provided and required side is as in classic client/server 
architectures. This can be somewhat different from the previously defined interface 
ports that are related to role specification/implementation, and where required 
interface is associated with specification and provided interface with the 
implementation. Thus, the clear distinction in used symbols for function ports and 
role related interface ports is important for proper understanding of diagrams. 

On the client side it is possible to introduce symbols to abbreviate the pattern (see 
the internals of Function_client component in Figure 5-5 and Figure 5-6). In 
that way, higher-level primitives are created. Comparing Figure 5-5 with Figure 
5-3 and Figure 5-6 with Figure 5-4 one can observe parts of the pattern design that 
are assumed by symbolic representation. 

 
Figure 5-5 Introducing symbols for synchronous inter-component function calls 
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Figure 5-6 Introducing symbols for asynchronous inter-component function calls 

5.2.2 Switch interaction contract 

One of the more commonly used interaction contracts is the switch interaction 
contract  

Design pattern – goals and ideas 

The switch contract can dynamically switch interface connections between 
components implementing compatible interfaces. The switching is done depending 
on the value of some parameter.  Here we limit our attention to the case when the 
parameter can have one of two predefined values. Generalization to the case when 
parameter can have more then two predefined values is straightforward. 

Design description 

In this design, the switching mechanism works by using conditional branching 
(SWITCH element of SystemCSP notation) and renaming operators. In that way, 
dynamical reconnection of ports, dependant on parameter value, is achieved. 

A practical example of using the switch interaction contract is making a design that 
enables switching dynamically client’s requests between two servers that both 
provide the same required service.  

In the design given in Figure 5-7, the parameter, that determines the component to 
be used, is named server. When it has value equal to one, server1 is used and 
when its value is equal to two, server2 is used. Server_proxy is a process that 
accepts requests from a client, forwards it to a server, receives reply from the 
server and sends the result back to the client. Channel ends of Server_proxy 
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process are, depending on the value of the server parameter, renamed to match 
the names of the appropriate channels of either the server1 process or server2 
process. 

 
Figure 5-7 Switch interaction contract capable of data processing 

Remarks 

Note that the CSP feature of renaming event ends is used for dynamical switching 
of interconnections.  

The solution in Figure 5-7 is in fact an elegant way to write down two branches 
(one for each parameter value and appropriate server) with sequence of events as 
defined in Server_proxy process. Implementation can be the same in both cases.  

The solution from Figure 5-7 is also convenient when additional data processing 
should be inserted inside the switch interaction contract. A place to actually specify 
that additional data processing is inside the Server_proxy process. Function 
providers for this additional processing can be internally specified as fixed part of 
the contract definition or can be pluggable external components related to the 
contract via inter-component function calls.  

The switch design pattern can be used for instance to implement service with 
varying QoS level depending on various optimization criteria (e.g. available 
processing power), or to switch service providers depending on working mode. In 
fact, it is so useful in practice of component-based development that in the Koala 
framework (van Ommering, 2004) switch is one of the basic language elements. 
Here however no special symbol is introduced for the switch interaction contract. 

Recommendation is to create a symbol for the switch element (e.g. alike to one 
used in the Koala framework) and to provide tool support in specifying port 
connections and criteria that triggers switching.     
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5.2.3 Diversity interfaces 

Design pattern – goals and ideas 

Like in the Koala framework (van Ommering, 2004), that served as an inspiration 
for introducing this and the previous pattern, a diversity interface is just an 
interface used for a specific purpose of initializing component’s parameters with 
values from its environment (e.g. from  related interaction contracts). The required 
side is the component that needs to be initialized with parameters from the 
environment and the provided side is a component (often an interaction contract) 
providing values for those parameters.  

Design description 

In the example depicted in Figure 5-8, a parameterized calculation is performed. 
The example illustrates the usage of div interfaces to initialize the parameters of 
components participating in an interaction contract.  

 
Figure 5-8  Parameterized calculation - an example of using diversity interfaces 

Component A is initialized via its div interface with vector of parameters par1. 
When it is invoked with vector of input values x, the component will calculate the 
function Fun1(x,par1) and provide results. Component B does the same but with 
a different function Fun2(x,par2). The interaction contract first initializes 
components A and B with vectors p1 and p2 for vector parameters par1 and par2 
respectively, and then it can perform calculations by delegating requests of the 
client first to component A and then forwarding the obtained result to the 
component B. The result obtained from component B is sent back to the client. 
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Remarks 

The symbol used for the diversity interface is, as in the Koala framework, the 
keyword div associated in this case with a synchronization connection relating 
provided and required sides of the diversity interface. Using keyword div as port 
label is specific choice made in this case and not a rule. More often ports of 
diversity interfaces will carry names associated with the meaning of the parameters 
obtained from environment. The keyword div on a synchronization connection 
clearly indicates the purpose of the interface and in that case it does increase 
readability. 

Note that in this example, the pattern for implementing a synchronous inter-
component function call is used. This has resulted in a reduced number of ports 
(instead of separate ports for passing parameters to function providers Fun1 and 
Fun2, and obtaining result from them, in both cases single function port is used for 
both purposes). As a result, both expressiveness and readability of the diagram  
were enhanced.  

Note that the bInit flag is used to test whether the interaction contract is 
initialized. During the initialization phase, an action block is used to set bInit flag 
to value true. It could have been done in a dedicated code block element. Action 
blocks do increase readability of the notation by avoiding to visualize code block 
boxes for simple actions (i.e. setting /resetting boolean flags and setting state 
variables).  

In fact, the assumption is that the bInit flag is initially set to value false. That 
could have been specified in the variable declaration floating somewhere inside the 
interaction contract. However, specifying lot of variables, their types and initial 
values does tend to clutter readability of diagrams. From that reason, declaration of 
variables and their initial values are assumed to be specified in property pages of 
the parent component/contract. Visualization of variables on diagrams is optional 
and is avoided in the general case.  

Note that the example of Figure 5-8 would be further simplified by hiding 
initialization in separate view. In fact, a separate pattern can be created to achieve 
this – for instance replacing a conditional switch and initialization branch with an 
initialization process block and assuming in design pattern existence of boolean 
flag (as bInit in this example)  indicating whether component is initialized or not.  
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5.3 Patterns related to control systems  

5.3.1 Layered structure of control systems 

Design pattern – goals and ideas 

Control systems typically function at a number of levels (see Figure 5-9).  

At the lowest level, the highest priority layer is situated. Safety control makes sure 
that functioning of the system will not endanger itself or its environment. It is 
especially important when embedded control systems are employed in safety-
critical systems. Loop control is a hard real-time part that periodically reads inputs 
from sensors, calculates control signals according to the chosen control algorithms 
and uses the obtained values to steer the plant via actuators. Sequence control 
defines the synchronization between the involved subsystems or devices. 
Supervisory control ensures that the overall aim is achieved by using functions like 
monitoring and/or algorithms for parameter optimization. User interface is an 
optional layer that supports the interaction of the system with an operator (user), in 
the form of displaying important part of the system’s state to the operator and 
receiving the commands from the operator.  

 
Figure 5-9  Typical control system 

In fact, a complex control system (e.g. a production cell) typically contains several 
devices that need to cooperate. Every device can participate in any or all mentioned 
layers. The supervisory and sequence control layers are often event based and the 
control loop is time-triggered and periodic, with the period in general different 
from one device to another. Software components in charge of devices are either 
situated on the same node or distributed over several nodes.  

Design description 

The diagram of Figure 5-10 captures data/event dependencies between layers 
situated in the same device as well as between layers distributed over several or all 
participating devices. Because all layers are composed in parallel, two ways of 
clustering into components are possible: horizontal – where a centralized 
supervisory layer, sequence layer, control loop layer and safety control layer exist, 
and vertical - where parts belonging to the same device are considered to be a 
single component. 
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Figure 5-10  Typical layered structure of complex control system 

Figure 5-11 illustrates the case where devices are treated as components and layers 
as interaction contracts. Every device is in this approach a component that provides 
ports, which can be plugged into one of the four interaction contracts: supervision, 
sequence control, safety, loop control and data logging (see Figure 5-11). Every 
contract contains logic for handling several devices and managing synchronization 
between them.  

 
Figure 5-11  One SystemCSP design pattern for complex control systems 
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Internally, a device component might be organized as in Figure 5-12, with a 
subcomponent dedicated to the implementation of every role that maps to one of 
the layers supported by the device, and a subprocess dedicated to maintaining the 
state data of a device. In Figure 5-12, in order to put emphasis on structure and 
data-flow and not on control flow, the interaction oriented SystemCSP diagram is 
used, where communication data flows and binary compositional relationships are 
emphasized.  

Since several processes composed in parallel need to share same data, a centralized 
process (State data in Figure 5-12) is introduced to manage access to the data 
that captures the state variables of a component. This process is in fact the shared 
memory pattern or a set of instances of the shared variable communication pattern. 
Introducing such additional process(es) allows decoupled communication between 
processes implementing roles of various layers. In practice, for efficiency reasons, 
the state data process can also be implemented as a passive object that provides the 
necessary synchronization.  

 
Figure 5-12  Organization of device internals 

Remarks 

Often, it is useful to merge management of several activities belonging to different 
layers into a single interaction contract (e.g. some safety measures can be in the 
sequence control contract or sequence and supervision layer can be merged). 

A loop control contract is often implicit since there is no other dependency 
between control loops except for common usage of the timing, scheduling, and I/O 
subsystems to ensure precise in-time execution of time-triggered periodic 
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sampling/actuation actions. Upon performing the time triggered sampling/actuation 
(I/O subsystem) actions, loop-control processes of related devices are released to 
perform computation of the control algorithms. A loop control interaction contract 
can for instance perform scheduling (RM, EDF) of the involved loop control 
processes, check whether deadlines are missed and raise alarms to the safety or 
supervision interaction contract when that happens. E.g. in overload conditions, a 
loop control interaction contract can have a centralized policy to decrease the 
needed total computation time in a way  that reduces performance but does not 
jeopardize the stability of the control system.  

In the typical layered structure of a control system, layers get different priorities 
according to their importance and time requirements. The safety layer is of highest 
priority and is activated only when it is necessary to handle alarm situations. The 
next range of priorities is associated with loop control subcomponents. A range of 
priority levels might be necessary for the implementation of the scheduling method 
that will guarantee their execution in real-time. Sequence control is an event based 
layer and thus of less importance than the time-constrained loop control layer. The 
supervision layer is performing monitoring and optimization and is usually of least 
importance.  

5.3.2 Supervision and monitoring layer 

Design pattern – goals and ideas 

The monitoring design pattern enables safe monitoring of components and 
systems. Every component that needs logging facilities contains a Logger 
subprocess that relates it to a global monitoring component. The Logger 
subcomponent performs data logging into a local buffer.  Upon the request, data is 
transferred further to the Monitor component. The Monitor component collects 
data from several monitored processes and can reason about different safety and 
optimization issues and update system parameters or invoke some safety measures 
when needed. 

Design description 

Every component that has support for logging does internally contain a Logger 
process working in parallel with the rest of the component. A set of chosen 
variables can be logged at predetermined logging points in the monitored process. 
Logging points can be activated/deactivated due to commands from Monitor 
process. Logging points can be configured to log specific set of component’s 
variables.  Configuration of logging points is performed by Logger process block. 

 In design given in Figure 5-13, monitored components internally contain a 
Logger process block that synchronizes with other processes inside the component 
via a ‘log’ event. Processes inside the Normal mode process block do not 
synchronize among themselves on the ‘log’ event.  
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Figure 5-13 Logging and monitoring pattern 

Worth noting is that in Figure 5-13 data flow is depicted in both directions: from 
components to monitor and from monitor to components. The Logger process of 
every component does communicate logged data to Central monitor 
component. In the other direction, the monitor can, when needed, send some 
commands back to the component. Commands can be related e.g. to specifying the 
set of component’s variables to be logged at certain logging points, 
activating/deactivating logging points, or activating/deactivating Loggers.  

 
Figure 5-14 Details of monitoring interaction pattern 

In Figure 5-14, the monitoring interaction contract is displayed. From the active 
logging point inside the monitoring process, data is sent to logger via ‘log’ 
channel. Logger is kind of buffer that collects data from all logging points of its 
component and occasionally sends bigger chunks of data to central monitor 
component. Monitor component stores received data. It also contains 
supervisionManager that can issue commands to set of loggers it has under its 
control.  
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Remarks 

Such a monitoring component can be designed to plug-in higher level structures 
that provides facilities of SCADA (Supevisory Control and Data Acquisition) 
systems e.g. like in the OPC architecture (OPC, 2007). In such an architecture, 
separate components are dedicated to obtaining data access, archiving, displaying 
and handling alarms and similar events.  

Note that the depicted interaction contract relates monitored processes with central 
monitor via Logger component. In fact, the interaction contract is just a set of roles 
that engage in some interaction. Sometimes those roles needs a contract manager to 
handle interaction, sometimes not. For instance, in this case one can interpret the 
Logger role as such contract management role or as one of the peer participants in 
interaction without contract manager. The choice of whether some component is 
promoted into an interaction contract is in fact a subjective decision depending on 
the context of the problem.  

5.4 Fault Tolerance patterns 
In fault tolerant systems, effort is made to design system that can continue 
providing required or degraded service despite the presence of faults in the system. 
A fault in a system can cause an erroneous state of some component. This error 
can further propagate and cause a failure of the expected service delivery. Faults 
can be transient and permanent. Fault tolerance can be seen as a process consisting 
of error detection, error containment (isolating error from spreading further), error 
diagnosis and error recovery (Avizienis, 2004).  

 In a SystemCSP-based system, functional error detection is naturally located in 
precondition and postcondition tests related to the execution of interaction 
contracts and subcontracts. Detecting errors in the timing relies on the watchdog 
design pattern. Upon detection of an error in an interaction contract, this contract 
can halt further progress of the interaction and in that way isolate the error from 
spreading further. An interaction contract is also a natural place to perform error 
diagnosis, since an interaction contract can possess more information about the 
current state of the interaction than the participating components in isolation can. 
The purpose of error recovery is to substitute an erroneous state with an error-free 
state. This state can be some previously saved state or degraded part of that state or 
it can be a new error-free state. 

Forward error recovery attempts to handle errors by finding a new state from 
which the system can continue further operation. Usually it is based on replication 
redundancy. Replication can be done in software or in hardware (replicated 
specialized hardware or complete nodes or network interconnections). Forward 
error recovery is predictable in terms of time and memory overhead and thus often 
used in real-time systems (Pullum, 2001).  

Backward error recovery handles erroneous states by restoring some previous 
error-free state.  Backward error recovery is especially suited for handling errors 
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caused by transient faults. It has also the capability to handle unpredictable errors.  
The most widely used backward error recovery mechanism is checkpointing 
(Pullum, 2001).  

Another useful fault tolerance design pattern is exception handling. It can have 
termination or resumption semantics. The take-over operator of SystemCSP  
covers the termination semantics. The resumption semantics upon occurrence of an 
exceptional situation is in our case just delegating exception handling to another 
part of the same process. Exceptions that cannot be handled internally (inside 
components) are propagated across component boundaries.  

5.4.1 Recovery block 

Design pattern – goals and ideas 

The essence of the recovery block mechanism is providing several 
implementations of the same functionality, possibly with different QoS (Quality of 
Service) levels. If the results obtained by executing first block fails to pass the 
acceptance test, then the next block in line is performed, and so on. If all recovery 
blocks fail the associated acceptance tests, recovery block fails. 

Design description 

Figure 5-15 illustrates the usage of a recovery block fault tolerance mechanism in 
implementation of a service provider. After obtaining data via an ‘input’ channel 
end, data is processed by block F(x). In case when results pass the acceptance test 
the result is returned to the client.  If however the results did not qualify to pass the 
acceptance test, the input vector is forwarded to block G(x). If new result fails the 
acceptance test, the ‘error’ event is used to notify the client that the recovery block 
has failed to provide the required service. 

 
Figure 5-15  An example of using recovery block  
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In this example, the recovery block mechanism is implemented, but it is not 
generalized into form of interaction contract. It is possible to externalize the  
implementation F(x) and G(x) out of the component where the interaction takes 
place and implement them as service providers. In that way, a generic recovery 
block interaction contract can be created as illustrated in Figure 5-16.     
Participants in the interaction specified are function providers F(x) and G(x) and 
user component. 

 
Figure 5-16 Recovery block interaction contract 

Remarks 

In (Yeung et al., 1998), a distributed recovery block mechanism is described in 
CSP. The example given in Figure 5-15 is in fact a visualization of a non-
distributed version from that paper. 

Again, usage of the inter-component function call pattern did simplify the diagram 
by replacing in two occasions a pair of channel-ends needed for inter-component 
function call with the appropriate symbols. Such symbols contain function call 
declarations, which further increase readability compared to specifying just a pair 
of channel communications. 

5.4.2 Watchdog design pattern 

Design pattern – goals and ideas 

In section 4.1.3, a design for watchdog interaction contract is introduced in order to 
provide watchdog services used in the implementation of the timeout operator and 
the timed interrupt operator. Here (see Figure 5-17) a more elaborate version of the 
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watchdog interaction contract is presented. In addition, a generic role of the 
watchdog user is specified and two different implementations of the role are 
provided: one that uses watchdog in one-shot mode and the other one that use it in 
periodic mode. In periodic mode, watchdog is in charge of initiating both the 
precisely periodic timeout event (‘period’ event in Figure 5-17), and the watchdog 
deadline timeout event (‘timeout’ event in Figure 5-17).  

Design description 

The watchdog interaction contract, as designed in Figure 5-17, defines a contract 
manager named Watchdog and roles for Timer and WD_user processes. The 
Timer process allows its users to subscribe to a timeout service (‘subscribe’ event) 
and to cancel it (‘timer.cancel’ event). When the timeout interval expires for its 
user, it will activate it using the ‘timer.wakeup’ event. In this case, direct user of 
Timer process is watchdog process, and indirect user is watchdog user.  In 
one-shot mode, watchdog and its user interact in a way described in section 4.1.3.  

 
Figure 5-17 Watchdog interaction contract with specified roles of participating components 

In periodic mode, the user initiates the watchdog by specifying the periodic mode 
and time values for period and relative deadline. In every period, the user first 
waits for precisely periodic timeout (‘period’ event), then it will attempt to perform 
its normal mode activity before the deadline expires (‘timeout’ event). If it 
succeeds, it will disarm the watchdog via the ‘hit’ event. If not, its further 
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execution will be interrupted with a ‘timeout’ event. Compared to the watchdog 
presented in Section 4.1.3, this one when it works in periodic mode needs to 
distinguish between two kinds of ‘timer.wakeup’ events – the one due to period 
and the one due to deadline. TimeoutID is used for that purpose. In case timeoutID 
evaluates to meaning of period, the ‘period’ event is initiated. In case the meaning 
is ‘deadline’, it will check whether ‘hit’ event did take place already in that period 
(that is whether the user has finished its execution for that period. If ‘hit’ event did 
take place, everything is ok, and the status flag that indicates whether ‘hit’ event 
did took place can be reset to be ready for a next period.  If however the ‘hit’ event 
did not take place, ‘timeout’ event is initiated that will cause the normal mode 
execution of the watchdog user process to be aborted. 

Figure 5-18 introduces two different implementations of watchdog users, both 
refinements in CSP sense of the role of the watchdog user specified in the 
interaction contract. The left hand side is the implementation that uses the 
watchdog interaction contract in a single-shot manner and on the right-hand side is 
the implementation that uses the watchdog interaction contract in periodic manner.  

                                 
Figure 5-18 One-shot and periodic versions of the watchdog 

 Remarks 

Figure 5-19 presents symbols used for the abbreviated representation of using the 
watchdog. The one-shot watchdog users do guard a process (Normal execution) 
for a watchdog timeout and are in that sense equivalent to the usage of the timed 
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interrupt operator (see section 4.1.3). Hence, the used symbol is the same in fact. 

                        
Figure 5-19 Symbols used for watchdog usage 

The left most diagram is, as in section 4.1.3, based on a fork and join symbol of 
timed interrupt operator. In the middle diagram, the symbol is further abbreviated 
by showing only the process Normal execution. This makes a lot of sense since 
most of the time designers/users are interested in the normal control flow and not 
in handling watchdog timeouts. Hiding the process that handles watchdog timeout 
enhances the readability and scalability of the design. The third figure is used to 
introduce symbol for using periodic watchdog. T1 and T2 are time parameters that 
stand for: the time interval specified for period (T1), and the time interval specified 
for the watchdog deadline (T2).   

Note that the internal choice operator is used to specify that TIMER process will 
internally in some way decide whether to accept the timeout service 
subscription/canceling or to initiate the ‘timer.wakeup’ event. For this role, the 
complete description of how the choice is made is not relevant. Thus, this is an 
example of how an internal choice operator can be used to abstract away from 
details of the inner workings  that are irrelevant in the context of usage. 

The difference between specification of a role and the implementation is that in the 
specification of the role only the event interactions important for the interaction 
contract are present. If one compares the role of watchdog users as given in Figure 
5-17, and the two implementations of watchdog users as given in Figure 5-18, both 
implementations, although quite different, are trace refinements of the same role. 
However, these implementations do contain process blocks (Normal execution 
and Handle watchdog timeout) that might internally contain some event 
interactions irrelevant for this contract. Those process blocks are simply left out in 
the role specification because they do not contribute to the set of possible traces of 
the contract specification. The set of traces capturing the interaction specified in 
contract is based only on the events relevant for the contract. 
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5.4.3 Replica Management 

Design pattern – goals and ideas 

In Figure 5-20, an interaction diagram is displayed that relates a client component 
with a replicated server components via a replicaMgr contract.  

 

Figure 5-20 Replica management - interaction diagram 
All code related to managing the replication is situated in the ReplicaMgr contract, 
which enables reusing the same components in different replication configurations. 
Replicas can be on same node or on different nodes, can be identical or based on 
different designs (N-version programming). The ReplicaMgr can be on the same 
node as some of the replicas or on a separate node.  In this section, SystemCSP 
based designs are provided that specify hot-standby, cold-standby and majority 
voting types of ReplicaMgr. 

In the ‘hot-standby’ design pattern, upon receiving a request from a client, all 
replicas are activated, but only the first available result is actually used. After one 
of the replicas comes up with results, further execution of other replicas is aborted.  

In the cold-standby design pattern, replicas are activated one by one. If the first one 
fails to deliver the result, the replica next in line is activated.   

In the ‘majority voting’ design pattern, all replicas are active in parallel. Results 
delivered by replicas are then compared, and the decision about the result is made 
using voting.  

Design description 

In this section, designs will be introduced for the three mentioned types of 
replication management. In all designs, replicas are servers named r1, r2 and r3, 
and each replica has ‘request’ and ‘res’ channels.  

In the ‘hot-standby’ design pattern (see Figure 5-21), the ReplicaMgr first 
receives a request from a client (‘request’ event) and then it will distribute the 
request (events ‘ri.request’) in parallel to all involved replicas. In order to protect 
the interaction contract from being deadlocked by waiting on synchronization with 
failed replicas, sending the request to every replica is guarded using the watchdog 
design pattern.  
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The replicas work in parallel, and the interaction manager waits for a limited time 
(again the watchdog pattern is used) for one of the replicas to produce its results 
(‘ri.reply’ events). This kind of selective waiting is realized using an external 
choice element. In case one of the replicas comes up with the result, the process 
starting with the associated event is chosen. After the occurrence of ‘ri.reply event, 
further execution of the other two replicas is aborted using ‘ri.abort’ events. Again, 
watchdog protection from failed replicas is necessary because ‘abort’ event is 
event like any other and can not be performed if other side does not exist. 

 

Figure 5-21  Hot-standby 
In the cold-standby design pattern, given in Figure 5-22, a request is first sent (via 
‘r1.request’ channel ) to the first replica (r1). If the first replica does not accept the 
request within the predefined time (notice the use of the watchdog pattern), the 
request is forwarded to the second replica (process label Try2ndRep is followed), 
and if this one also fails to accept it, the request is forwarded further to the next 
replica in the chain. 

After the request is accepted by one of the replicas (e.g. r1 accepted event 
‘r1.request’ within a given time interval), the ReplicaMgr waits for a reply 
(‘r1.reply’ in case replica r1 is active) for a predefined time interval. If the reply 
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does not arrive (note the usage of the watchdog design pattern) within predefined 
time interval, a request is sent to the next replica in the chain (e.g. if replica r1 
failed, then process label Try2ndRep is followed). If the replica replies, then the 
result is forwarded (‘result’ event) to the client. If no replica in the chain is able to 
provide the result, then the ‘error’ event is initiated. 

 
Figure 5-22 Cold-standby 

In the ‘majority voting’ design pattern, the request is sent in parallel to all replicas. 
The sequence of sending the request to a replica and obtaining the reply from it, is 
guarded by the watchdog pattern.  In that way, a failing replica cannot block the 
ReplicaMgr process. Obtained results and status flags are used in the majority 
voting process block to make an agreement about the correct result. In case when it 
is impossible to deduce a result, the error event is initiated.    
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Figure 5-23 Majority voting 

Remarks 

‘Hot-standby’ replica management pattern is convenient to use when there is 
enough processing power available, and the time constraints are such that there is 
no time to invoke replicas in sequence only in the case when previous one failed. 

 In the cold-standby design pattern, given in Figure 5-22 only one replica is used at 
any time. This pattern is recommended in the case when CPU resources are scarce 
and the associated time constraints are relaxed enough to allow for handling replica 
failures in sequence. 

In the ‘majority voting’ design pattern, all replicas perform (unless they fail) the 
complete computation. Thus, the average CPU usage is larger compared to other 
two patterns. This pattern is recommended when replicas are most likely to fail by 
producing incorrect results.   

In case when the replicas are invoked periodically and contain state (e.g. if replicas 
are controller implementations), the state of the replica that produced the result 
should be communicated together with result to the ReplicaMgr. In the next 
iteration, the state from the previous iteration should be communicated to all 
replicas. This approach will prevent internal states of replicas to drift away. 

Note that usage of watchdog design pattern makes specification of the 
replicaMgr interaction contracts much simpler. Creating symbols for design 
patterns in order to abbreviate their description does in fact extend the vocabulary 
of the language. Using symbolic abbreviations of design patterns increases, in the 
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same time, readability, scalability and expressiveness. 

Normally, process labels are used to mark logically separate parts of control flow. 
However, in Figure 5-21, process label WaitForReply is inserted to visually split 
diagram into two parts. This illustrates the way in which the introduction of 
process labels does enhance scalability. In the general case, usage of process labels 
enhances expressiveness by allowing jumps to named points in control flow. Usage 
of process labels also increases readability, because it substitutes lines connecting 
recursion points to process entry points.  

5.4.4 Exception Handling 

Design pattern – goals and ideas 

The termination model of exception handling (see the take-over operator in section 
3.2.1) is not always convenient because it destructs all the work performed in the 
aborted process. Often, it is more desirable to first attempt recovery and if possible 
to avoid the need to abort the process. It is possible to construct a design pattern 
that will perform exception handling with the resumption semantics. Idea is to 
separate the part that attempts to handle exception from the rest of the design using 
a special process block. In that way, a visual separation of normal mode and 
exception handling mode (EHM) is obtained. If an invalid state is observed in 
normal mode, further control flow may be designed to lead to the EHM via a 
recursion label. When the exception is handled a process recursion label can be 
used to bring control flow back to some resumption point in normal mode. 

Design description 

Figure 5-24 depicts a case where EHMs of the contract and involved 
roles/components can interact and agree on ways to handle the exceptional 
situation. Role1 of Component1 offers both resumption and termination 
methods for exception handling. Resumption method relies on a jump from 
normal mode to the EHM part of the process that attempts to handle the 
exception. The normal mode and EHM blocks are two visually separated parts of 
the same process block. One can also understand this as analogue to state-diagram 
composed of two state-diagrams, where transitions between diagrams can lead in 
both directions.  

The termination method of exception handling is performed by the take-over 
operator and the Abort procedure block. The contract, named Contract1 in 
this case, is a single process that is also visually divided into two process blocks: 
normal mode and EHM.  
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Figure 5-24  Cooperation of contract and component EHM layers 

Remarks 

The power of the configuration given in Figure 5-24, comes from the fact that the 
interaction contract has additional knowledge about the current state of the 
interaction and can also obtain/maintain info on the status of the participating 
components. In that way, the interaction contract can pinpoint more precisely on 
possible causes of the exceptional situation and propose, to the participating 
components, appropriate ways to handle it. 

If EHM cannot handle the exception, it can trigger an ‘abort’ event that will trigger 
the termination model of exception handling. 

5.4.5 Checkpointing 

Design pattern – goals and ideas 

Checkpointing (see Figure 5-25) is a backward recovery mechanism that relies on 
correcting an erroneous state by rolling back to some previous correct state.  

Design description  

In example given in Figure 5-25, two recovery lines are defined (marked with 
labels recovery line 1 and recovery line 2 in the design), splitting the 
participating components and interaction contract into two phases. After an 
exceptional situation is detected inside Phase 1 or Phase 2 of the contract, control 
is given to the EHM part of the interaction contract. EHM will use the events 
belonging to the alphabet of every participating component to transmit exception 



5.4 Fault Tolerance patterns 149 

information to them. As a consequence, components will quit executing the current 
phase and go into the EHM part of their process definition. From there, it will use a 
dedicated channel (‘rolei’) to communicate its status to the EHM part of the 
contract. The Contract will wait for a predefined period of time to obtain the status 
information of all involved components. After that, it will perform analysis and 
establish whether the interaction should be reverted to some recovery line or 
aborted.  Its decision will be communicated (either event ‘ri.abort’ or event 
‘ri.rcvLn’) to the participating components. Component will, depending on the 
communicated event, either be aborted or jump to the recovery line. The used 
mechanism makes sure that all involved components are rolled-back to the same 
phase. 

 
Figure 5-25 Checkpointing 
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Remarks 

When interaction of several concurrently executing processes is guarded from 
faults using a checkpointing mechanism, a domino effect can occur. In such a 
domino effect, one process causes another process to rollback, the other causes a 
third one to roll-back, and so on, which can result in rolling-back the first process 
even further and so on. This makes asynchronous checkpointing of interaction 
unsuitable for real-time systems where execution must be predictable in the sense 
of time and memory requirements.  The proposed design pattern relies on 
interaction contract as a manager that keeps the roll-back process of involved 
components synchronized. In this way, the “domino-effect” is avoided and as a 
consequence the execution is more predictable in the sense of time and memory 
requirements. 

5.5 Conclusions 
In this chapter, SystemCSP design methodology is illustrated by designing 
reusable interaction contracts. The design patterns presented here, illustrate that 
SystemCSP is a graphical notation that seems to be able to provide, in addition to 
the formal verification capabilities, intuitive and readable modeling of interactions 
in concurrent systems.   

The patterns defined here are intended to be reused as basic building blocks in the 
design process. Creating symbols for design patterns in order to abbreviate their 
description does in fact extend the vocabulary of the language. Using symbolic 
abbreviations of design patterns increases, in the same time, readability, scalability 
and expressiveness. 

Interaction contracts are as reusable as components. Defining patterns in the shape 
of the reusable interaction contracts yields a possibility to verify contracts, as 
abstract entities, in isolation from concrete systems. Instances of interaction 
contracts can then be used in actual systems, eliminating in that way the need to 
make new design of interaction among components in ad-hoc manner every time. 
Patterns are especially useful for the interactions that are used very often.  

If a standard set of interaction contracts would be created for the most common 
patterns of interaction among components, and if a set of standard language 
symbols are created for every one of them, software designers would be able to 
significantly raise the abstraction level in specifying and communicating designs. 
The example illustrating this is the usage of inter-component function call patterns 
and watchdog pattern in specification of the several other patterns presented in this 
chapter.  

Some of the patterns are concepts often used in practice of software development, 
but rarely precisely defined and formalized. In that sense, since SystemCSP is 
directly translatable to CSP, this chapter also contributes to formalizing those 
patterns. 
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6 Production cell setup  
If you want to learn to swim, jump into the water. On dry land, no frame 
of mind is ever going to help you. 

    Bruce Lee 

The primary target application area of the SystemCSP is designing interactions in 
complex control systems. Purpose of this chapter is to test whether SystemCSP is a 
convenient way of capturing designs in control systems. The methodology used 
here is to design software for a complex control setup. This test case can be 
considered as a first step towards applying SystemCSP in real industrial settings.  

The used setup is alike to realistic industrial applications regarding the number of 
controlled devices, complexity of interactions and performance. A production cell 
setup is one of the test cases used for illustrating various formal methods and 
design methodologies (Burns, 1998; Zorzo et al., 1999). Normally, in research 
communities, the production cell setup is used on the level of simulations. In this 
project, however, the decision was to really build the setup (see Figure 6-1).  

 
Figure 6-1  Photo of the Production Cell Setup 

The advantage of having a real setup over just a simulation is that a real setup does 
in general raise important issues that were neglected in modeling and simulation 
phase. In a way, a real setup is the litmus test of the taken approach. In this case, 
the implementation of the setup started before the work on the SystemCSP 
graphical language. The setup was envisioned to be used for tests concerning the 
distribution, allocation optimization, testing fault-tolerance mechanisms and the 
validation of a simulation framework. However, during the design of software to 
control the setup, it was discovered that GML/CT approach was not really suitable 
for all aspects of the design. As a result, the SystemCSP approach emerged. 

The focus of this chapter is validation of SystemCSP as a way to design software 
for complex control setups. Section 6.1  briefly describes the production cell setup 
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implemented in the context of this project, as the MSc assignment of van den Berg 
(2006). Section 6.2 introduces some other ways to design software that were used 
for controlling this setup. Section 6.3  presents a SystemCSP based design of the 
software that controls the setup. Section 6.4 is again SystemCSP design, but this 
time based on interaction contracts managing the synchronization among devices. 
Section 6.5 summarizes this chapter in a few sentences. 

6.1 Production cell setup 
A production cell setup in general has the following elements:  

• a processing device,  

• an input belt that carries the raw material to the processing device,  

• an output belt that carries processed products to the storage place located 
at its end,  

• a robotic device that transports raw material from input belt to the 
processing device, and  

• a robotic device that extracts a product out of the processing device and 
places it on the output belt.  

Our production cell setup is inspired by industrial molding machines as produced 
by the industrial partner in this project, Stork Plastics. Figure 6-2 depicts the 
mechanical design of the setup as captured in SolidWorks, a mechanical design 
tool. 

 
Figure 6-2 SolidWorks model of the Production Cell 
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A processing device inside our Production Cell setup is named the ‘molding 
machine’ or ‘molder’. However the molding machine of this setup  does not have 
anything to do with molding. The only similarity is that the processing device used 
in our setup does close a product exit door before it accepts raw material (metal 
blocks in our case) and then after some time opens the product exit door to allow 
the extraction device to pick-up the processed product (i.e. unchanged metal blocks 
in this case).  

Purpose and properties 

The setup is useful for testing and comparing different design choices regarding 
concurrency structure, distribution, fault tolerance, applied control algorithms, etc.  

The setup consists of six devices that are capable to operate in parallel and that 
need to cooperate and synchronize their activities. Improper synchronization is 
visually observable from the behavior of the system.  

The control of the setup can be distributed in an electronically reconfigurable way 
over several controllers that can be located on different nodes that are connected, 
for instance, via fieldbus connections. 

The setup is made suitable for testing different fault-tolerant mechanisms, for 
instance, handling failures of a node or a network. If one controller is busy or fails 
at a certain moment of time, another controller should be able to take over its tasks 
almost instantly. In case when replicated controllers are located on different nodes, 
this requires switching of all I/O from one node to another. Van den Berg (2006) 
designed special hardware to allow this. This creates preconditions for 
experimenting with replicas distributed on different nodes and testing the response 
of the system on the node and/or network failures.   

 
Figure 6-3  Setup is fixed to a cart 

Special safety measures are taken in the mechanical design such that failures of the 
control system leave the underlying mechanical parts undamaged, allowing many 
experiments to be performed without degradation or change in performance and 
making the setup suitable for demonstration purposes. The complete setup is fixed 
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on a handcart (see Figure 6-3) allowing relatively easy transportation and out-of-
the-lab demonstrations. 

Detailed description 

The setup consists of 6 mechanical devices that operate concurrently and need to 
synchronize their activities. Each mechanical device is actually an actuator 
performing one-dimensional movements. Devices are named according to their 
‘roles’ in the system: feeder, molder, extraction device, extraction belt, rotation 
device and feeder belt (see Figure 6-4). 

First, the molder is fed with raw material. The feeder is a device that pushes a 
block representing the raw material into the molder. This block can be pushed into 
the molder only after the door of the molder device is closed.  The molding process 
is mimicked by keeping the door of the molder closed for a predefined time 
interval. After ‘molding’ is finished, the door of the molding device opens and the 
robotic arm of the extraction device is allowed to enter inside the molder and to 
pick-up the metal block (representing a product of the molding process) using its 
electromagnet. The robotic arm then uses a translational movement to deliver the 
box to the extraction belt. The extraction belt transports blocks from the extraction 
device to the delivery point at the end of the belt.  The belt and the related one-
place storage at its end introduce a flexible transport delay by providing temporary 
storage space, allowing in that way more flexible synchronization between 
machines. 

 
Figure 6-4  Scheme of the production cell 

The one-place storage at the end of the extraction belt is the place from which 
blocks are reinserted into the system.  The rotation device uses an electromagnet to 
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pick-up blocks and uses a rotational movement to transfer them from the storage 
place to the feeder belt. The feeder belt transports the blocks to the feeder. In that 
way, blocks circle through the system, making the setup convenient for 
demonstration and testing purposes. 

In Figure 6-4, the positions of sensors are marked with numbers. The exact 
meaning of the sensors is given in Table 2. 

Table 2 Measurement and consequence of each sensor 

S# Detection status Consequence 

S1 Block or feeder-arm detected No block input possible from feeder 
belt 

S2 Block in molder detected No block input possible from feeder 

S3 Molder door closed No block extraction possible from 
molding machine 

S4 Input space on extraction belt 
not empty 

Completing extraction is not possible 

S5 Block detected near the end of 
the extraction belt 

The exact location of the block is 
known; a fixed end-motion profile can 

be initiated. 

S6 Block detected at the drop-off 
point 

No block input possible from extraction 
belt 

S7 Input space on feeder belt not 
empty 

Completing rotation is not possible 

S8 Block detected near the end of 
the feeder belt 

The exact location of the block is 
known; a fixed end-motion profile can 

be initiated. 

 

Structural deadlock 

The introduction of the rotational unit does introduce a cycle in the system 
structure. This kind of cycle is of course not present in a real production cell. 
However, in our case it is useful, because it creates a structural deadlock condition 
and thus creates an interesting research problem. 

If the belts are used as buffers and moved one step at the time, we can assume that 
each belt is divided into N buffer spaces. Then a complete system will in fact 
represent a circular buffer with a size equal to 2N+3 spaces (2 belts with N spaces, 
plus a space in molder, feeder and storage), as illustrated on the left-hand side of 
Figure 6-5. The system cannot work for 2N+ 3 or more boxes, because it would 
mean that the circular buffer is full. This would be a deadlock situation caused by 
the structure of the system. 
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If the actions of the extraction device and the rotation device are split into parts 
allowing those devices to be used as buffers as well, then the system has 2N+5 
buffer spaces. In this case, system is in a deadlock situation when trying to use 
2N+5 or more blocks, as illustrated on the right-hand side of Figure 6-5. 

For our Production cell setup, the size of the belts is chosen such that N is set to 6. 
Thus, deadlock takes place for 15 or more boxes in the first case and 17 or more 
boxes in the second case.  

                          
Figure 6-5  Production cell as a circular buffer with 2N+3 and 2N+5 buffer places 

Due to moving the belt for one position only after there is a new block at its 
entrance, the minimal number of used blocks is equal to N. Less than N blocks will 
not fill the buffer of the belt and will therefore not be transferred further. 

An alternative way of controlling the setup is to keep the belts running whenever 
that is possible. A belt then has to be stopped when both the storage position 
(located after the end of the belt) and the position on the belt immediately before 
that storage are occupied. In addition, depending on the product, it might be 
necessary to stop the belts prior to the delivery of a product to the belt.  

In the case when belts are kept running whenever that is possible, it can happen 
that there is a block at the beginning and a block at the end of belt, while the rest of 
the belt is empty. If the same situation happens at the same time on the other belt 
and while all other buffer spaces in the devices are also occupied (3 or 5 as in the 
case of the step-by-step controller), then a deadlock situation occurs. Thus, 
deadlock can in this case happen already with 4+3 or 4+5 that is 7 or 9 boxes.  

6.2 Other ways to design software  
After the setup was implemented, several different approaches to software design 
were tested on the setup. Section 6.2.1 describes a time-based approach taken by 
the van den Berg (2006) to test whether the setup works as expected. Section 6.2.2 
describes the follow-up work of Maljaars (2006) on controlling the setup using the 
GML/CT combination. Section 6.2.3 depicts the software design implemented in 
the scope of the ViewCorrect project by Huang and Groothuis (Huang et al., 2007). 
This approach is based on the POOSL modeling language. 
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The purpose of briefly illustrating those approaches is to obtain insight in points 
where SystemCSP can offer better design support than those other relevant 
approaches. 

6.2.1 Time-table based approach 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Feeder:
Feed block
Extract arm
Retracted position

Molding machine:
Closing 
Closed
Opening
Open

Extraction robot:
Retracted
Moving into molding machine
Electromagnet activated
Moving out of molding machine

Extraction belt:
Moving
Stand still

Rotation robot:
Moving above block
Electromagnet activated
Movement to feeder belt
Movement to middle position
Middle position

Feeder belt:
Moving
Stand still

3 seconds

Action: Needed # timesteps of 100ms

 
Figure 6-6 Basic timing scheme (van den Berg , 2006) 

Van den Berg (2006) constructed the timing scheme given in Figure 6-6 as a trade-
off between achievable actuator characteristics, a desired complete production 
cycle per block of about 3 seconds and taking precedence constraints into account. 
This timing scheme is divided into 30 time steps of 100ms each. Its main purpose 
was to derive achievable motion profiles and determine the characteristics of the 
actuators using simulation models. Van den Berg (2006), used it also as the basis 
for the software implementation.  

The time-table based approach is often used in industry. 

6.2.2 GML/CT library design 

In the MSc thesis of Maljaars (2006), software to run the setup was designed using 
GML/CT approach. The design was entered in gCSP tool and the code generation 
facilities of the tool were used to generate source code.  

Figure 6-7 depicts the system-level block diagram representing the process 
structure of the designed software. In Figure 6-7, all devices are composed in 
parallel and every device is represented via a parallel composition of 
Device_Motion_Profiles, Device_controller and Device_WritePWM process 
blocks.   
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Figure 6-7 Block scheme (Maljaars , 2006) presenting process blocks on top-level 

Figure 6-8 shows only the processes related to the rotation device of Figure 6-7. 
Note that this is in fact, the loop control layer.  

 
Figure 6-8 Rotation device (Maljaars , 2006) 

All three processes from Figure 6-8 are specified using GML. Figure 6-9 depicts 
the GML specification of the Rotation_Controller process. It uses time channel to 
block until predefined time is reached, than it will read in parallel encoders and the 
reference values of position, speed and velocity, as calculated by the 
RotationMotionProfiles process. After that the value calculated in the previous 
cycle is written to the actuator and the Rotation_controller process is used to 
calculate values for next actuating action. The Rotation controller process is 
imported from 20-sim. 
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Figure 6-9 Rotation control process (Maljaars , 2006) 

However, sequence controllers were not specified using GML. Reason was that 
sequence controllers are best expressed via state-machine like designs, and GML 
was found not to be suitable for such design. Instead, the UPAAL tool was used to 
specify the sequence controllers. The one for the rotation device is depicted in  
Figure 6-10.  

 
Figure 6-10 Sequence controller of the rotation device (Maljaars , 2006) 

The lack of expressiveness of the GML approach, more precisely its inability to 
depict state-machine like designs that was observed during this project, was one of 
the reasons that triggered work on the SystemCSP graphical language.  
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6.2.3 POOSL 

POOSL(Parallel Object-Oriented Specification Language) (Geilen et al., 2001; 
POOSL, 2007) is a general purpose modeling language based on process algebras 
and object-oriented concepts. The process algebra part comes from CCS, and is 
expressed via primitives that can be used to specify parallelism, non-determinism 
and time properties.  

As in our approach, processes communicate via synchronous channels, and similar 
control-flow elements exist. Unlike SystemCSP, POOSL doesnot provide ways to 
visualize its control flow. Visualization is kept on the level of making block 
diagrams specifying the structure of the system via instances of process classes 
related via ports. 

 
Figure 6-11  Block scheme of processes controlling the setup (Huang et al., 2007) 

Figure 6-11 depicts the block diagram of the process instances involved in 
controlling the Production cell setup (Huang et al., 2007). Figure 6-12 illustrates 
the POOSL code for controlling the rotation device. 

 
Figure 6-12 POOSL code for controlling the rotation device (Huang et al., 2007) 
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Compared to the SystemCSP approach, POOSL misses ways to visualize its 
control- flow elements, and could for instance benefit from using some 
SystemCSP-like visualization.  

6.3 SystemCSP - Device-oriented design 

6.3.1 System structure 

Basic structure 

A device in the production cell setup consists of a mechanical device and a 
software component that controls it.  In Figure 6-13, the top-level of the software 
design made to control the production cell setup is specified in SystemCSP. The 
top level is a parallel composition of the software components representing the 
mechanical devices participating in the production cell. Internally, every software 
component that controls a device consists of a parallel composition of a sequence 
control subcomponent and a loop control subcomponent (see right-hand side of 
Figure 6-13).  

               
Figure 6-13 Structure of the Production Cell and the devices 

Compared to design patterns given in section 5.3.1, the design given in Figure 6-13 
does not contain interaction contracts. Instead, interaction between devices takes 
place directly among sequence control layers of the involved devices.  

Each device in Figure 6-13 contains sequence control and loop control layers. In 
section 5.3.1, devices did in addition contain safety and supervisory control 
subcomponents and state data processes. The state data process was introduced in 
order to share state data of a device among its subcomponents. However, in this 
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case, sequence control and loop control components do not need to share any state 
data. 

The safety layer is in the Production cell partly implemented in the hardware of the 
plant. Handling exceptional situations is merged into the sequence control layer.  

A supervisory layer is not present in Figure 6-13. One way to add monitoring 
facilities is to follow the design pattern given in section 5.3.2.  

Adding monitoring layer 

The design of the system is extended with monitoring layer according to the 
pattern from section 5.3.2. This results in adding a central monitoring component 
in parallel to the device components (see Figure 6-14). Inside every device a 
Logger component is added. It is composed in parallel with the already defined 
parallel composition of Sequence_ctrl and Loop_ctrl components, as depicted 
in Figure 6-14. 

         
Figure 6-14  Device oriented software with central monitoring 

The central monitor from Figure 6-14 does play the role of the supervision control 
interaction contract from section 5.3.1. Note in right-hand side part of  Figure 6-14 
that Loop_ctrl and Sequence_ctrl processes synchronize on ‘start’ and ‘stop’ 
events, but not on ‘log’ events. Each one of those two processes separately 
synchronizes with Logger component on ‘log’ events. In addition, events ‘start’, 
‘stop’ and ‘log’ are not exported to higher abstraction levels in order to avoid 
synchronizing on those events with subcomponents of other devices. 

In Figure 6-15, the interaction-oriented view is used to depict subcomponents of a 
device component, their compositional relationships and set of events on which 
they synchronize. 
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Figure 6-15 Interaction-oriented view of device structure 

Assigning priorities 

Let us consider the case when all software components presented in Figure 6-14 
are executed by a single node.  Loop_control subcomponents of all devices are 
real-time and thus need to be of highest priority. If loop_control processes of 
different devices are executed with different sampling periods, their priorities can 
be ordered using RM scheduling. The next priority level is reserved for supervision 
control components. Logger components do have the least priority.  

 The watchdog design pattern from chapter 5, could be used to detect timing faults 
in cases when periodic Loop_ctrl processes miss their deadlines.  

As discussed in chapter 4, in order to decouple higher priority loop_controllers 
from the rest of the system, their interactions with the environment should go via 
shared data objects. An alternative way to decouple loop controllers from the rest 
of the system is to design their interaction pattern in such a way that it is not 
possible for them to wait on synchronization with the environment. One way to do 
this is if every iteration starts with checking out readiness of those events in a 
guarded alternative, where a SKIP guard is associated with normal execution. In 
that way, synchronization with events from the environment is attempted only 
when the environment is ready to engage in events. Next section deals in detail 
with the design of Loop controllers. 

6.3.2 Loop controllers 

Structural part 

The structural part of the design related to the pure computation code (the 
sequential code without any events) is in SystemCSP best captured via UML class 
diagrams. In every device, a loop controller process controls the actual movement 
of the associated mechanical device using an instance of the DeviceControlUnit 
class (see the UML diagram in Figure 6-16).  

An object of class DeviceControlUnit offers to the loop controller process, that 
contains it, an interface consisting of 5 functions. Once a motor is put in the 
running mode via the start() function, the loop controller is expected to periodically 
call the control_loop () function every sampling period. This function uses the 
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auxiliary private function calculate() to perform the actual control loop 
calculations. The stop() function is used to initiate stopping the motor. The 
setDirection() function is used to switch between forward and backward 
movement. isMovementDone() is a function used to check a flag keeping track of 
whether the motor has finished the specifed movement. 

Two types of sensors (see Figure 6-16) are present in this setup: encoders and end-
switches. Encoders are used to detect current position. The movements are limited 
via end-switches. Two types of actuators (see Figure 6-16) exist in the production 
cell system – a motor and a magnet. Movement of every device is performed by a 
motor. The extraction and the rotation devices, in addition, each have an instance 
of the Magnet class. The Magnet class offers only on() and off() functions.  

 
Figure 6-16 UML class diagram for actuators used in the Production Cell 

The DeviceControlUnit internally contains one or more instances of MotionProfile 
and LoopController classes (see Figure 6-16). The function calculate() of the 
DeviceControlUnit will call in a row the functions calculate() of the objects 
implementing the motion profile and the controller object. The implementation of 
those functions can be generated from a CAD tool related to control engineering 
(e.g. Matlab, 20Sim, …).  

As explained in Section 4.2.1, there are two ways to order sensor reading, 
calculation of the control loop algorithm and writing the calculated values to the 
appropriate actuator. The case of the sample-calculate-actuate pattern can be 
implemented like: 
control_loop(){ 

 sensorValues =  sensor->read(); 

 reference = motionProfile->calculate(); 

 actuatorValues = controller-> 

                          calculate(sensorValues,reference); 

      actuator->write(actuatorValues); 

} 
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The sample-actuate-calculate pattern can be implemented like: 
control_loop(){ 

 sensorValues = sensor->read(); 

      actuator->write(actuatorValues); 

      reference = motionProfile->calculate(); 

 actuatorValues = controller->  
  calculate(sensorValues, reference); 

} 

 

 
Figure 6-17 Loop Controller process 

In Figure 6-17, the class defining LoopController process is depicted. This class is 
a kind of ProcessBlock abstraction. It internally uses an instance of 
DeviceControlUnit named motor to handle the device unit. In addition, it 
contains boolean flags running, braking, integer dir for keeping the direction, 
time Ts as a period of its activation, and ‘start’ and ‘stop’ event ends exported to 
interact with appropriate sequence control process of the same device.  The 
behavior of the LoopController Process is specified in its run() function and 
depicted via SystemCSP diagrams. 

Behavior definition 1 - Position based loop controller 

In this variant, the motion profile is fixing the start and stop position. This means 
that the loop controller will internally use DeviceControlUnit::isMovementDone() 
to determine when a movement is done. Than, it will initiate the ‘stop’ event to 
signal the end of the movement to the higher-level sequence controller of the 
device. In Figure 6-18, an event synchronization pattern of the position-based loop 
controller is depicted. 
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Figure 6-18 Loop controller when motion control unit initiates stop event 

The loop controller is activated periodically with period Ts. After the occurrence of 
‘start’ event, initiated by the sequence controller, the flag running will be set to 
the active level (note the rising “/” sign in front of it in the event related action 
field). The received parameter dir will be used to set the direction of the motor, 
which results in choosing the appropriate motion profile. In the standard body of 
the loop, when the flag running is set, the function control_loop() of the  device 
control unit is called to read new sensor values, calculate actuator data and write 
them to the PWM unit.  

The Loop controller given in Figure 6-18 assumes that the specification of the 
movement of a device includes fixed values for both start and end point. In the case 
of the belts, this implies moving the belts only for a fixed step. In that way, the 
length of the belt is divided into N buffer spaces filled with boxes one by one  

Behavior definition 2 - Velocity based loop controller   

The other solution is to keep the belts moving unless their movement is restricted 
by the needs of synchronization with neighboring devices. In this case, the loop 
controller needs to be different since initiating the stopping of the motor has 
become the responsibility of the sequence controller.  The designed loop controller 
is depicted in Figure 6-19.  
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Figure 6-19 Loop controller when motion control unit accepts stop event 

The event ‘start’ also is used to pass the direction as parameter. Immediatelly after 
this event, the flag running is set to active level (note the ‘/’ sign before the flag 
name in the event-related action description field). Then the direction of the motor 
is set and the standard body of the loop is executed. The standard body of the loop 
is executed periodically with period Ts. If the running flag is set to true, the 
motor object (instance of the DeviceControlUnit  abstraction) will calculate the 
next position and update the steering value for the actuator. 

After the associated sequence controller issues the ‘stopReq’ event, the braking 
flag will be set to active level and the function DeviceControlUnit::stop() will be 
used to change the profile of the reference input to the one predefined for stopping 
the motor. In one of the next periods, the velocity of the belt will stabilize at zero, 
the belt will stop running, and the function DeviceControlUnit::isMovementDone() 
will return true. After that both ‘braking’ and ‘running’ flags will be reset (note the 
“\” sign) and a ‘stopAck’ event will be initiated to notify the associated sequence 
controller that the belt has stopped. 

6.3.3 Sequence control 

Basic blocks 

A single motor, that can in general move forward or backward, drives any of the 
six devices of the production cell setup. In case of the belts, only forward 
movement is used. The extraction device and the rotation device have, in addition, 
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a magnet associated. The four basic processes repeating in different devices are 
therefore: Move_fwd, Move_bckwd, Magnet_on and Magent_off. Figure 6-20 
depicts internals of those basic building blocks. 

 
Figure 6-20 Basic sequence control blocks 

Delay blocks are added to Magnet_on and Magent_off  processes in order to allow 
the magnet to properly grasp/release a block before the next action (e.g. movement 
of the device holding the magnet) is allowed. 

Dependencies    

Table 3 lists all precedence constraints relating actions of the devices in the 
Production cell system. The first column in the table is an index of the table entry, 
the second column is the name and the state of the sensor (if any) that can replace 
explicit synchronization by detecting in the real world when the condition 
associated with the precedence constraint is fulfilled. The third column has 
subcolumns for the device and a condition that allows action to take place. The 
fourth column contains two subcolumns – one for the device and the other one for 
the action constrained by the condition of the third column. 

Note in Table 3 that precedence constraint PC6 seems not to be strict in our setup. 
This is due to the construction of the setup where the extraction robotic arm is 
actually above door level. However, in a real molding machine the extraction 
device should not be allowed to attempt to enter into closed molder. In fact, this 
precedence constraint is important in our setup since it does imply the one that is 
more strict - a constraint that does not allow the extraction robotic arm after 
entering the closed molder to attempt to pick-up a block and carry it back.  

Precedence constraint PC9 states that the molder should not close its door before 
the extraction device is in the idle position. In our setup it is not relevant due to the 
construction of the setup where extraction robotic arm is actually moving above the 
molder door level.  However in a real production cell, depending on the homing 
position and the settling time of the positioning of the extraction robotic arm, it  
can be a safe solution to fulfill this condition.  
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# sensor Device :: condition Device :: action 

          
PC1 

¬(S1 & 
S8) 

Feeder belt, 
Feeder 

space 
available at 
the end  

Feeder 
belt 

can deliver block 
(move fwd) 

         
PC2 

S1 Feeder belt delivered 
block 

Feeder can feed molder  
(move fwd) 

            
PC3 

S3 Molder door closed Feeder can feed molder  
(move fwd) 

         
PC4 

¬S2 Molder empty Feeder can feed molder  
(move fwd) 

         
PC5 

S2 Molder block in 
molder 

Molder can mold 

PC6 ¬S3 Molder door 
opened 

Extraction 
device 

can enter molder   
(move fwd) 

PC7 ¬S4 Extraction 
belt 

space 
available 

Extraction 
device 

can deliver block   
(magnet off) 

PC8  Extraction 
belt 

not moving Extraction 
device 

can deliver block   
(magnet off) 

PC9  Extraction 
device 

not moving Molder can close door 
(move fwd) 

PC10 ¬(S6 & 
S5) 

Extraction 
belt 

space 
available  
at the end  

Extraction 
belt 

can move   
(move fwd) 

PC11 S6 Extraction 
belt 

delivered 
block 

Rotation 
device 

can pick-up 
(magnet on, move 
fwd/bckwd) 

PC12 ¬S7 Feeder belt space 
available 

Rotation 
device 

can deliver block   
(magnet off) 

PC13  Feeder belt not moving Rotation 
device 

can deliver block   
(magnet off) 

Table 3 Precedence constraints in the production cell 

Precedence constraints PC8 and PC13 stand for the constraint that belts need to be 
stopped before a block is placed on them. In the general case of a production cell 
the optional presence of those constraints depends on the intended application 
usage. In our case, insisting on those constraints results in a slower speed of the 
production cycle, but yields a better aligning of the blocks and in that way decrease 
of the probability of blocks slipping off the electromagnet of the rotation device 
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due to the electromagnet being applied away from the center of the block.  

Generic sequence control 

Sequence controllers are usually state machines or sequences of activities repeated 
in cycles. In Figure 6-21, the sequence of actions performed by each of the devices 
is illustrated. 

 
Figure 6-21 Sequence control with generic precedence constraints 

For the belts, a simple finite state machine is depicted, consisting of only two 
states: moving and idle. The transitions from moving to idle and back are 
somewhat more complex due to precedence constraints PC1, PC2, PC12 and PC13 
for the feed-belt and PC7, PC8, PC10 and PC11 for the extraction belt.   

For the other devices the precedence constraints are made explicit as preconditions 
for the related actions according to Table 3. 

The feeder is allowed to enter into the molder after preconditions PC2, PC3 and 
PC4 are satisfied. After feeding the block into the molder, it moves backward to 
the retracted position creating the space for the next block to be delivered by the 
feedbelt.  

The molder is allowed to close the door after the precondition PC9 is satisfied. 
After closing the door, it will perform the ‘molding’ process and then open the 
door to allow the extraction device to pick-up the product. 

The extraction device can move into the molder after precondition PC6 is satisfied. 
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There it will turn the magnet on to pick-up the block and start moving backward 
after precondition PC7 is satisfied. When it is situated above the extraction belt it 
needs to wait for precondition PC8 to turn the magnet off and deliver in that way a 
block to the belt. 

When a block is in the storage place, indicated by PC11, the rotation device can 
enter the storage and pick-up the block by turning on its magnet.  After 
precondition PC12 is fulfilled, it can move the block to the feeder belt. When it is 
positioned above the feeder belt, it still needs to wait for the precondition PC13 to 
be fulfilled before turning its magnet off and delivering in that way the block to the 
feeder belt. 

An alternative, given in Figure 6-22, is not to allow the extraction and rotation 
device to be used as a buffer place. 

 
Figure 6-22 Case when the extraction and rotation devices cannot be used as buffers 

 
Thus, the extraction device and the rotation device are not allowed to hold a block 
in air waiting until the preconditions for delivering the block are met. In that case, 
all three preconditions (PC6, PC7 and PC8) are met before the block transfer starts.  
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Time based schedule 

 
Figure 6-23 Time-based software design 

One way to implement the software for production cell is, as in section 6.2.1, to 
associate starting-time and end-time constraint with each activity. In that way, 
preconditions that hide dependencies between devices are transformed into time 
constraints related to each action as it is in the SystemCSP diagram depicted in 
Figure 6-23 for the time table given in Figure 6-6. 

The control-flow oriented part of SystemCSP is capable of depicting the time-
based design in a clear and efficient way. This is, again, the case especially due to 
the possibility to associate a precondition field with any process and due to 
possibility to specify time constraints in the precondition field. 
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Sensor based sequence control 

 
Figure 6-24 Sensor based design of sequence controllers 

Compared to the generic sequence control scheme from the Figure 6-22, in Figure 
6-24 preconditions are validated using sensors. In this way dependency between 
devices is transferred into detecting, in the plant,  the results of actions the devices 
have performed. 

No sensors cover preconditions PC8, PC9, and PC13, but, as already explained, 
satisfying thepreconditions PC8, PC9 and PC13 can safely be omitted in our setup. 
Thus, it is possible to actually to design sequence controllers in a way that satisfies 
precedence constraints by relying only on sensor measurements.  

Again, the control-flow oriented part of SystemCSP is capable to depict the 
intended design in a clear and efficient way. This is, again, the case especially due 
to the possibility to associate a precondition field with any process.  

Event based sequence control 

Another possible design choice is to replace every precedence constraint with 
event synchronization. This is illustrated in Figure 6-25 and Figure 6-26.  In Figure 
6-25, sequence control processes are depicted for the feeder, molder, extraction 
device and rotation device. The sequence controllers on Figure 6-25 still do match 
the generic sequence controllers from Figure 6-22. In this case precedence 
constraints are fulfilled via explicit event synchronization between devices. Note 
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that a precondition of the action marked as PCi on Figure 6-22 maps to accepting 
an appropriate event in Figure 6-25. The event is initiated by the device whose 
action will fulfill the precondition. 

 
Figure 6-25  Event based solving precedence constraints 

The feeder needs to wait until it has a block available (precondition PC2 is fulfilled 
by the event ‘fb.blockAvailable’). Feeder at the same time needs to wait until the 
molder is ready to accept the block (event ‘emptyAndDoorClosed’ that maps to the 
preconditions PC3 and PC4). Since the order of the ‘emptyAndDoorClosed’and 
‘fb.blockAvailable’ events is irrelevant, the feeder waits for them in parallel 
allowing either to take place first. After the occurrence of both events, the feeder 
can move forward and push the block into the molder. After delievering the block, 
the feeder notifies the molder about that (‘blockInMolder’ event that maps to PC5) 
and then goes backwards to its home position. After this movement is performed, 
the event ‘blockTaken’ (that maps to PC1) is initiated.  

The molder device needs to wait until the extraction device is stopped (PC9 
satisfied via the occurrence of the event ‘extRobotIdle’) before it can close the 
door. Than  event ‘emptyAndDoorClosed’ is used to signal to feeder both PC3 and 
PC4. After the feeder has pushed the block into the molder (event ‘blockInMolder’ 
that maps to PC5), the “molding” starts. When the “molding” time expires, the 
molder will open the door (event ‘doorOpened’ that maps to PC6). 

The extraction device has its homing position in the middle of its path between the 
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entry point of the extraction belt and the molder. After it settles down in the 
homing position it does notify the molder about this (event ’extRobotIdle’ that 
maps to PC9). Then it waits until the molder finishes the ‘molding’ process and 
opens the door (PC6 and related event ‘doorOpened’). When the extraction belt is 
ready to accept block (PC7 and PC8 and related event ‘eb.spaceAv’), the extraction 
device can enter the molder and pick–up the block, transfer it to the belt and notify 
the belt about block delivery using ‘ev.blockTransfered’ event. 

The rotation device has its initial position in the middle of its path between the 
extraction belt and the feedbelt. It will wait in the home position until a block is 
available on the extraction belt (PC11 and related event ‘eb.blockAvailable’). Then 
it will request space on the entry point of the feedbelt and when this request is 
granted (PC12, PC13 and related event ‘fb.spaceAv’) it can transfer the block from 
the extraction belt to the feed belt. When moving the block is finished and after the 
block is placed on the feed belt, the extraction belt can be notified that the storage 
space is empty and ready to receive the next block (event ‘eb.blockTaken’). The 
feed belt can be notified that the block is delivered (event ‘fb.blockTransfered’).  

There are two possible ways to realize the sequence control processes for the belts. 
Figure 6-26 depicts one for belts performing step-by-step movements and the  
Figure 6-27 the case when belts are kept free-running whenever possible. 

    
Figure 6-26 Belt sequence control for step-by-step case 

In the case of the belt sequence controller in Figure 6-26, the belt is moved one 
step at a time. As explained in section 6.3.2, this kind of sequence controller is 
used together with the position-based loop controller. The sequence controller only 
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initiates the movement of the belt using the ‘start’ event, and the loop controller 
initiates the ‘stop’ event after the motion profile is done. The sequence controller 
accepts a ‘stop’ event and waits for the next request for space (see Figure 6-26). If 
the space at the beginning of the belt is requested, then in case the space is 
available (sensor S4 and associated precedence constraint PC7 in case of the 
extraction belt and sensor S7 and associated precedence constraint PC12 in case of 
the feeder belt), the acknowledgment event ‘spaceAv’ will be initiated. The 
sequence controller will then wait until block is delivered, satisfying in that way 
precedence constraint PC8 for the extraction belt, that is PC13 for the feeder belt. 
If space was not available, then if there is a block in the storage, action will be 
initiated for the next device in chain to take it away. If there is no block in the 
storage, then the belt can be moved for a single step. 

The result of this sequence controller is that blocks are actually queued on the belt 
and moved only after a block is delievered to available space on the input part of 
the belt.   

 
Figure 6-27 Belt sequence control for free-running case 

The free running belt depicted in Figure 6-27 uses a velocity-based loop controller 
as described in section 6.3.2. This sequence controller needs to initiate both the 
‘start’ event and the ‘stop’ event. The sequence controller is designed as a parallel 
composition of two repetitive processes: BeltEntry and BeltExit. BeltEntry process 
controls the movement of the belt and the BeltExit process is used to synchronize 
with storage on the belt exit point. BeltEntry process will allow the belts to start  
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whenever there is a place at its end, that is when sensors  (Sx and Sy that map to S7 
and S6 respectively for the extraction belt and S1 and S8 for the feeder belt) 
indicate that. When however, both places are occupied, the ‘stopReq’ event will 
initiate stopping of the belts and after the associated loop controller responds with 
an acknowledgment (‘stopAck’ event), the process BeltEntry returns to its starting 
point. Alternatively, belts are stopped (events ‘stopReq’ and ‘stopAck’) prior to the 
delivery of a block to the belt, that is after the device delivering blocks to the belt 
issues the space on the belt entry point and the space is available (note the logical 
guard spaceAvailable in the guarded alternative process in Figure 6-27).  

6.4 Interaction contract based design 
Obviously, interaction contracts bring in some overhead. However, using 
interaction contracts is considered to be much more structured approach than 
specifying the synchronization between devices in isolation. An interaction 
contract is a generic way to organize interaction. It can offer standardized 
interfaces that participating components  are expected to full-fill, creating in that 
way reusable plug-and-play architecture. The real power of the interaction contract  
is in detecting and handling the exceptional situations that pass the boundaries of 
participating components or arise due to the interaction pattern. For instance, only 
in a centralized place that manages the interaction it is possible to efficiently detect 
and react on the violations of the time constraints that are imposed onto parts of the 
interaction handled by different participating components. 

The design pattern presented in Section 5.3.1 is based on an interaction contract 
dedicated to the activity of managing a layer (sequence control, loop control, 
supervisory control and safety layer) or more layers of a complex control system.  

Logical design choice is to first focus attention on introducing the sequence control 
interaction contract. As in section 6.3, it is possible to extend the designed system 
with a supervivision layer according to the design pattern given in Section 5.3.2. 
Again, the interaction contract for the loop control layer is implicitly present due to 
the coupling introduced via sharing the same processor node according to some 
priority scheduling scheme. The safety layer is partly implemented in hardware and 
partly merged into the sequence control layer.  

The best starting point for defining the sequence control interaction contract is to 
reuse existing event-based interaction patterns of sequence controllers from Figure 
6-25 and Figure 6-26, and to group related event synchronizations into interaction 
contracts.  

As illustrated in Figure 6-28, three actions seems to be best suited to form the basis 
of this interaction pattern:  1) coordinating feeder belt, feeder and molder in the 
action of feeding the molder; 2) coordinating molder, extraction device and 
extraction belt in the action of extracting the product; and 3) coordinating the 
extraction belt, the rotation device and the feeder belt in the action of recycling the 
block. 
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Figure 6-28 Splitting sequence control synchronization pattern in 3 interaction contracts 

The block diagram representing the resulting interaction contracts and participating 
components is depicted on left-hand side of Figure 6-29. As in section 6.3, every 
device is again a parallel composition of loop controller and sequence controller 
process. (see the right-hand side of Figure 6-29).   
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Figure 6-29  Interaction contract based design - top level 

In Figure 6-30, interaction of the set of devices making the production cell setup is 
organized via sequence contract and supervision contract. Again, as it was done in 
section 6.3.1 according to pattern given in section 5.3.2, the Logger component is 
added inside each device in order to add support for the supervision layer. 

      
Figure 6-30 Extending system with supervision layer 

Figure 6-31 depicts the interaction contract for feeding the molder. Event 
synchronization is similar as before. The addition is that now the interaction 
contract manager (named “Feeding molder” in Figure 6-31) takes control over 
managing the part of interaction.  

The interaction contract manager does have sensors under its control and uses them 
to check the correctness of the readiness signals received from participating 
components. Thus, the readiness of participating devices is double-checked: via 
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sensors and via event communication. In case when erroneous state is detected, an 
exception is raised (exc1 or exc2 in Figure 6-31) and control is given to its 
subprocess specifying the exception handling mode (EHM in Figure 6-31 ).  The 
EHM process can analyze sensor readings and communicate with involved devices 
to make diagnosys and suggest a way to remove erroneous state. 

 
Figure 6-31  Interaction contract for feeding the molder 

The sequence controllers inside devices are in fact implementing one or more roles 
defined by appropriate interaction contracts. Figure 6-32 illustrates the way 
sequence controllers are made out from implementations of role specifications 
from the interaction contracts. Note that the role implementations preserve event 
pattern defined in role, but add implantation and interactions that are irrelevant for 
the specification of the role in interaction contract. 
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Figure 6-32 Sequence controllers as implementation of contract roles 

6.5 Conclusions  
The production cell setup is a big step towards an industrial-strength test of a 
design methodology. SystemCSP seems to be a convenient way to capture the 
interactions in the design specification of complex control systems. The first type 
of relevant interactions includes the ones inside the same control layer (e.g. 
interactions related to supervision and sequence control) spread across several 
devices. The second type of relevant interactions is the interaction between 
different control layers inside the same device (e.g. in proposed designs 
interactions between loop controller and sequence controller subcomponents of a 
device via ‘start’ and ‘stop’ events, or interaction of both with Logger component 
via ‘log’ event).  

In fact, this setup was one of the triggers for the development of SystemCSP as a 
novel graphical language for the design specification of concurrent, component-
based systems. 

 This chapter gives detailed description of the setup, explain some other ways used 
to design software for the setup and puts focus on ways to express different types 
of designs in the SystemCSP language.  

In section 6.3.3, it is demonstrated that the control flow oriented part of the 
notation can be used to capture sequence controllers when interactions are implicit 
– as in designing the time-based schedule and sensor-based sequence controllers. 

The most structured, flexible and reusable way to design control systems  is based 
on creating interaction contracts. In fact, the introduction of interaction contracts 
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into SystemCSP was inspired by the paper dealing with coordinated atomic actions 
designed for some other production cell system (Zorzo et al., 1999).   

Note that in addition to SystemCSP diagrams, UML class diagrams were used to 
define structure of objects used inside Loop Controller components. The possibility 
to combine SystemCSP with UML class diagrams was already introduced during 
the positioning of SystemCSP as given in section 3.7. The test case illustrates this 
in practice. 

SystemCSP focuses on the interactions among components and does not include 
support for the domain-specific code generation (e.g. the contents of 
calculate() functions of motionProfile and controller objects). This is 
the task of CAD tools specific for control systems and physical system modeling 
domains.  This is in accordance with positioning of SystemCSP as given in section 
3.7. 

The work on designing the software in SystemCSP for the production cell setup 
did in addition bring forth the need for additional elements that were added to the 
notation (action blocks, comment blocks and precondition/postcondition fields in 
process blocks). 

Recommendation is to implement and test the proposed designs on the real setup. 
Performance measurements should be done in order to compare performance of 
different allocations of components to the hierarchy of execution engines (nodes, 
OS threads, UL threads, function-based concurrency). Performance should be 
thoroughly compared with the performance of the designs based on other 
approaches (e.g. the three approaches described in section 6.2). 

Furthermore, the designs should further be extended with fault tolerance support. 
Design patterns from section 5.4 (e.g. replication and checkpoining) are expected 
to be useful in that procedure. Hardware support exists for distribution and 
dynamic reconfiguration of switching control over the interface to the devices 
among nodes. Suggested test case is the distribution of replicated components on 
several nodes and experimenting with reactions of system on node and network 
failures. 
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7 Conclusions and 
recommendations 

If you always put limits on everything you do, physical or anything else, 
it will spread into your work and into your life. There are no limits. There 
are only plateaus, and you must not stay there, you must go beyond 
them.       

     Bruce Lee 

7.1 Conclusions 

7.1.1 Summary 

The main contribution of this thesis is the introduction of SystemCSP, a novel 
graphical design language for specification of interactions in concurrent 
component based embedded control systems. SystemCSP was developed in the 
scope of the embedded control systems application area. However, SystemCSP is 
intended to be used in any kind of software/hardware development dealing with 
interaction of concurrent components.  

 
Figure 7-1 Main contributions of this thesis 

As illustrated in Figure 7-1, the contribution of this thesis can be separated in 
several parts: introduction of core elements of SystemCSP notation, creating basis 
for real-time support, creating set of reusable design patterns intended to serve as 
basic building blocks in design, and using complex control setup to test the 
applicability of SystemCSP in control systems area. 

SystemCSP core elements 

SystemCSP is based on the CSP formal algebra, The main advantage of relying on 
CSP as underlying formal method is that the concurrency of an application is 
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designed in a structured way that is liable to formal checking. SystemCSP 
combines CSP with elements of modern component-based software engineering 
practice. In that way, it provides an intuitive and readable way to visualize 
concurrent component-based systems. Notion of interaction contract allows 
specifying, studying, analyzing (e.g. formal checking) interaction patterns in 
abstract way, in the isolation from the actual context of usage.  

The notation has two essential viewpoints: control-flow oriented and interaction-
oriented. The control-flow oriented viewpoint results in more readable final 
concurrency structure of the application. The interaction-oriented viewpoint is 
especially useful when the focus is on interactions of set of components designed 
in isolation from the rest of the system. System designs can be scattered in many 
interaction diagrams focusing on different aspects, and with the same components 
participating in more than one such diagrams. Still, firm, formally verifiable, 
relationships are preserved across interaction diagrams. Those relationships are 
reflected in the control-flow diagram describing the current abstraction level. In 
that way, incremental design of control-flow diagrams is possible by adding 
restrictions in different interaction diagrams throughout the process of system 
design. This is particularly useful in early stages of the design, when the focus is 
on interactions of sets of components in isolation from the rest of the system. At 
the end of the design process, all different diagrams converge into a single, 
formally verifiable, system that can be expressed via control-flow diagram. 

The notation has been compared to relevant related graphical design specification 
languages, namely UML and GML. SystemCSP does incorporate some ideas from 
both. From its predecessor, GML, the idea of defining binary compositional 
relationships is adopted and used as a basis of interaction oriented diagrams. 
However, the philosophy behind the way of using binary relationships is changed 
and a set of more expressive binary relationships is introduced. SystemCSP seems 
to be in general more expressive and readable than its predecessor GML. UML has 
also strongly influenced SystemCSP. The comparison with UML illustrated that 
SystemCSP is capable to offer alternatives to most of the UML diagram types.  

Real-time support 

A separate chapter of this thesis is dedicated to time properties of SystemCSP 
based systems. First, the language elements for the specification of time properties 
are introduced. The proposed way of specification is inspired by previous work in 
the CSP community (Roscoe, 1997; Schneider, 2000). In second part of the 
chapter, implementation of CSP-based systems with real-time properties was 
investigated. The gap between concepts of CSP-based systems and the ones 
required by classic scheduling theories is identified. Two major directions are 
proposed as a way of handling this issue: (1) introducing design patterns that can 
fit CSP-based systems into requirements of existing scheduling theories and (2) 
constructing distinct scheduling theories for CSP-based systems.  
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Design patterns in form of reusable interaction contracts 

SystemCSP design methodology is illustrated by creating set of design patterns in 
the form of reusable interaction contracts. Some of the patterns are concepts often 
used in practice of software development, but rarely precisely defined and 
formalized. In that sense, since SystemCSP is directly translatable to CSP, this 
work also contributes to formalizing those patterns. 

Complex control system test case 

SystemCSP was applied to design software for the Production Cell setup that was 
implemented in the scope of this project. The setup consists of several devices that 
operate concurrently and need to cooperate and synchronize their activities in order 
to achieve proper functioning of the overall system. Two ways of designing 
interactions were used: device-oriented and interaction contracts based. This case 
study proved usefulness of the notation and of design patterns related to structuring 
concurrency in control systems. The case study also provided feedback that was 
used to introduce several new elements to the notation. 

Implementation issues 

The appendices provide basic support for practical implementations of SystemCSP 
models. In Appendix A, the complete SystemCSP design domain is represented by 
an appropriate metamodel. This lays the foundation for a structured development 
of tool that will support the design methodology.  Appendix B provides the design 
of a library providing support for software implementations of SystemCSP based 
models. 

7.1.2 Evaluation 

The problem statement given in section 1.3.1 did list key demands for the features 
of the SystemCSP language. The listed key properties are: mapping to some 
existing formal verification method, support for specification of time properties 
and ways to analyze them, support for modern notions of component-based 
development, expressiveness, readability, scalability, unambiguous interpretation 
and applicability in complex control systems. 

Mapping to some existing formal verification method 

This demand is satisfied by choosing CSP as a formal verification method and by 
associating the introduced notation elements with the elements of the CSP 
language. Mapping is specified in Chapter 3 by coding SystemCSP designs in CSP. 
The examples of this mapping given in Chapter 3 illustrate that mapping is simple 
and direct. Thus, SystemCSP designs is relatively easy to transform into CSP 
scripts. This mapping to existing formal method allows a user to formally verify 
his designs for properties like refinement and freedom of concurrency hazards (i.e. 
deadlocks and livelocks). The support for formal verification will be in prospective 
tool covered by code generation to CSP domain. 
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Support for specification and analysis of time properties 

As explained in the summary section of this chapter, chapter 4 deals with time 
properties. The notation has fair support for specification of time properties. 
However, achieving real-time in practical implementation is more difficult 
problem. Some insight and possible approaches in real-time implementation and 
analysis are discussed in detail in chapter 4.  

The key conclusion is that classical scheduling can be used in combination with 
SystemCSP, but that it imposes restrictions on some key properties. Briefly stated, 
replacing rendezvous channels with shared data object primitives is deleting some 
precedence constraints and thus extending set of possible behaviors (as expressed 
by traces). That can mean, as a consequence, that the implementation is no longer a 
refinement of the specification. Thus, although combination of classic scheduling 
and design patterns is possible, further research is advocated in the direction of 
inventing scheduling methods customized for CSP based systems. Two insightfull 
ideas are presented, but more as hints for further research than as mature solutions. 
Therefore, a recommendation for a prospective SystemCSP design tool is to (at 
least in beginning) relies on the combination of proposed design patterns and 
classical scheduling theories. 

Support for component-based development 

Component-based development support is discussed in chapter 2, and introduced in 
chapter 3. Support for component-based development includes introducing 
elements for specification of components, interaction contracts and different types 
of ports. Key issue is the introduction of interaction contracts as abstract reusable 
specifications of interactions. In that way, interactions can be formal checked 
without the need for concrete applications. Once checked, such an abstract 
definition can be instantiated in any suitable application context. 

Expressiveness and readability  

Expressiveness and readability are important properties of any visual notation. 
Those issues are most discussed in chapter 5, where a set of proposed design 
patterns was used as examples of SystemCSP designs. Lack of expressiveness and 
readability is easy to observe in a visual notation. However, the level of those 
properties present in a visual language is not easy to measure in an objective way. 
This is the case because the level of those properties also depends on the thinking 
process of a notation user.  For instance, the thinking process of a notation user can 
be dominantly visual or dominantly textual, the set of chosen symbols might not 
match the intuitive meanings in the mind of the user and so on. The way the human 
mind operates and handles complexities is highly individual. Therefore, the 
approach taken was to provide separate problem statement, design in SystemCSP 
and its textual explanation and set of remarks both on patterns and notation sides. 
In that way, every reader can evaluate expressiveness and readability.  
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Scalability  

Scalability is related to the way readability changes with increasing complexity of 
the designs. One powerful way of dealing with scalability is hiding part of the 
design in opaque process blocks and component symbols on the current level of 
abstraction and specifying them in a separate view. An additional vehicle for 
achieving scalability in SystemCSP designs is the introduction of the interaction-
oriented part of the notation. This part of the notation enables specification of 
interactions among set of components in isolation from the rest of the system. The 
same component can participate in any number of such interaction-oriented 
diagrams. Binary compositional relationships of the component with other 
participating components specify its relative position in control flow oriented view. 
In that way, the control flow oriented view is built incrementally through adding 
restrictions in interaction-oriented views. The possibility to focus in this way on 
different interactions of the same component in a set of different diagrams 
containing part of control flow relationships relevant for that interaction, is a 
powerful way to achieve scalability and build systems in an incremental, iterative 
way. 

Unambiguous interpretation  

This demand is covered in several ways. First, the careful definition of the notation 
elements in Chapter 3. Second the formalizing the structural relationships between 
abstractions through the definition of the metamodel of the notation (see Appendix 
A). Furthermore, Appendix B defines software architecture that can be used as 
reference model for the implementation of SystemCSP designs. 

Applicability to complex control systems 

This property is tested by designing software for the complex control setup in 
Chapter 6. It seems that SystemCSP is good vehicle to specify synchronization 
among participating devices and also a good way to specify interactions present in 
each of the devices due to the existence of several layers (loop control, sequence 
control, supervision and safety). This case study has showed that SystemCSP is 
equally capable to express designs based on time-triggered architectures, as the 
ones based on implicit sensor events and the ones that use explicit event based 
synchronization between devices. Interaction contract oriented design seems to be 
offer very structured way of managing complex interactions. 

Conclusion 

All demands listed in section 1.3.1 are supported in the notation and evaluated 
throughout the thesis.  
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7.2 Recommendations and open issues 

Tooling 

Obviously, a tool is needed to support SystemCSP design process. The metamodels 
described in Appendix A can be used as a basis of a model database in the 
prospective tool. Recommendation is that some metamodeling framework, e.g. the 
Eclipse EMF framework (Eclipse, 2007), is used for specifying metamodels. The 
prospective tool should provide a design editor and set of basic viewers providing 
support for entering SystemCSP designs. It should be able to perform code 
generation to software, hardware and CSPm domains. The framework proposed in 
Appendix B should provide the support for proper execution of the code generated 
for the software domain. The tool should also provide facilities for coupling with 
most important tools in related domains. A simulation and run-time execution 
framework should exist and be able to feed the obtained data back to the tool. The 
tool should be able to perform a visualization of the current state in control flow. 
Debugging should be possible through special interfaces dedicated to the 
interaction of tool with a SystemCSP executable. 

One of the issues was whether the existing gCSP tool based on the GML notation 
can be reused for building interaction-oriented part of the prospective SystemCSP 
tool. This question was raised due to similar basic concepts of GML and 
interaction-oriented part of the GML.  

GML uses interaction-oriented elements to specify control flow, which restricts it 
to essentially specifying one big single diagram possibly divided in several 
separate views only via containment hierarchy.  SystemCSP clearly separates 
interaction-oriented view from control flow oriented view. In that way, the same 
SystemCSP component can exist in many interaction-oriented diagrams and single 
control flow diagram.  

gCSP tool is customized towards design philosophy of GML which is, as explained 
above, different from the one of SystemCSP. Due to this difference, reusing the 
existing tool is difficult and not recommended. 

Mapping to hardware domain 

Providing support for code generation from SystemCSP designs to hardware 
domain (e.g. VHDL code) is a necessary step for a seamless software/hardware 
codesign method. In designing ways to implement certain SystemCSP primitives in 
hardware, the software framework can partly serve as a role model. Useful lessons 
for this approach can be learnt from Handle-C (Celoxica, 2007). Handle-C is an 
occam-like programming language used in hardware target domains as an 
alternative to VHDL, Verilog and other hardware description languages. 

Distribution 

The SystemCSP notation is intended to be used in distributed systems.  The 
production cell setup is built in a way that takes into account the needs for 
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distribution and dynamical reconfiguration (Van den Berg, 2006), and as such it is 
expected to be a useful test case for implementing and studying distributed 
SystemCSP-based designs for complex control systems. Distribution of control of 
the setup will allow testing different replication mechanisms and fault tolerance 
strategies.  

The SystemCSP software framework is expected to be able to incorporate easily 
commercial real-time fieldbus drivers, and to provide set of real-time enabled 
drivers where they are needed and not available.  

In the scope of subprojects of this project, several fieldbus interconnections were 
tested and their properties were evaluated. In one of the subprojects, real-time 
Firewire driver for real-time Linux was developed (Zhang, 2005; Zhang et al., 
2005). However, this work preceded the creation of SystemCSP and although rich 
with interactions, it was not designed in SystemCSP. 

Simulation 

In the scope of this research an occam-based simulation framework for networked 
control systems (ten Berge, 2005; ten Berge et al., 2006) was designed. The 
framework internally uses the network simulator of TrueTime (Henriksson and 
Cervin, 2003; Henriksson et al., 2005) and was able to give some insight in the 
influence of different fieldbus parameters on the behavior of the overall system. In 
this simulation framework, the assumption was used that computation times are in 
general negligible compared to network delay times. This was a reasonable first 
approximation for the simulation framework intended to evaluate different 
fieldbuses. However, to make the simulation framework more realistic, the 
framework needs to be extended to deal with execution times of computations. In 
addition, incompatibility of the occam-like approach and the SystemCSP approach 
require significant changes in structuring that framework.  

Software implementation 

The software implementation framework as proposed in Appendix B is at the 
moment of writing not fully implemented. Missing parts need to be implemented 
and the whole framework needs to be rigorously tested before it is used in practice. 

The design of software implementation as proposed in Appendix B, does introduce 
decoupling of the application from the execution engines architecture. In that 
sense, four possible layers are distinguished: nodes, operating system threads, user 
level threads and function call based concurrency. Recommendation is that OS 
processes are added as an additional layer. The significance of this layer would be 
that e.g. in C++ based systems, it would allow reusing components in binary form. 
In that way, it would provide enhanced possibilities for dynamic reconfiguration of 
the system.  

Usage 

In addition, further testing of SystemCSP language on various practical case 
studies is needed to provide the necessary feedback and to improve the notation. 
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A Metamodels 

A.1 Metamodels as basis for code generation 
A purpose of creating a metamodel is making a definition of the modeling domain. 
Such a definition can, for instance, be used as a basis of a structured way to capture 
models in tool implementations. Another advantage of using a metamodel is its 
potential to introduce a standard, tool independent, way of data interchange 
between different domains and tools.  

The structure of a good metamodel reflects possible structural relationships and in 
that way restricts the possible ways of combining instances of abstractions and 
relationships in a model. However, what is a good way of defining the design 
domain metamodel, results usually in a poor performance in implementation of 
models in some target domain (e.g. software or hardware implementation). Hence, 
the differences between a class diagram defining a design domain metamodel, and 
a class diagram representing its implementation in some target domain, are often 
unavoidable in practice.  

One structured approach to perform code generation using metamodels is described 
in (Milicev, 2002). There, metamodels are defined for both the source domain and 
the target domain. Intermediate metamodels can be introduced as a way to 
gradually and in a structured way proceed from a source domain metamodel to a 
target domain metamodel. For code generation from a SystemCSP model to its 
C++ source code implementation, that approach would look like as in Figure A-1.  

 
Figure A-1 Code generation process - from SystemCSP design to C++ software 

Note that in Figure A-1 prior to the actual code generation, original model from the 
design domain is gradually transformed towards the final source code. This process 
takes place in stages defined via intermediate domains (SystemCSP software 
domain and C++ domain). 
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The SystemCSP design domain metamodel reflects directly the abstractions and 
relationships of the design space, as visible in graphical representation. However, 
in a practical implementation in a target domain a somewhat different set of 
abstractions and associated relationships is used.  

The differences between design domain and software implementation models come 
from different requirements. While the source metamodel of the SystemCSP 
design domain puts focus on expressing abstractions and structural relationships  as 
visualized in SystemCSP diagrams, the software implementation is focused on 
operational semantics and efficient implementation in the target domain (in this 
case C++). For instance, some of the abstractions are only needed during design - 
e.g. binary compositional relationships and also pairs of fork and join control flow 
elements that exist in design, are in implementation replaced with construct 
instances of the appropriate type. Some abstractions are less important and thus 
mapped to attributes of other abstractions, some new abstractions are needed to 
provide support for execution framework and again something that was less 
relevant and thus just an attribute of an abstraction in  source metamodel might be 
represented with a standalone abstraction in the target metamodel.  

The C++ domain metamodel defines abstractions representing notions in the C++ 
domain like classes, data members, member functions, formal parameters, 
association relationships and inheritance relationships. The definition of C++ 
domain metamodel is omitted here, since its detailed description is not relevant for 
the scope of this thesis. The code generation from the C++ domain metamodel to 
source files is hard-coded, since that part of the code generation process is not 
expected to change during tool lifetime. 

In practice relying on a pipeline of metamodels, as the one in Figure A-1, can 
contribute to the flexibility of code generation process. Instead of hard-coding code 
generation facilities in the design domain model (which is often done in practice of 
tool development), decoupling between design domain and implementation domain 
allows for more structured customization.  

The SystemCSP software metamodel is a place where the specification of target 
platforms and various customization options can be inserted. A customization can 
be e.g. specifying choice of operating system, choice of input/output devices, 
allocation of processes to nodes and routing of channels/events via networks and 
I/O interfaces.  

Both design domain and implementation metamodels can contain auxiliary code 
for the model execution according to operational semantics of the involved 
elements. In this way, validation process is also divided in several steps – allowing 
separate validation of design and of its implementation and comparison of the 
results. 

At the end,  worth mentioning is that nowadays generic frameworks exist that 
provide some of the operations necessary for defining and maintaining models 
based on metamodels  For instance, the Eclipse Modeling Framework (EMF) 
project (part of the Eclipse project) provides an UML-based meta-metamodel 
known as eCore. eCore is a generic metamodel used for defining metamodels.  
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eCore defines as its abstractions: classes, attributes and references and structural 
relationships possible between them. In this way, any metamodel can be expressed 
by using those basic abstractions and mapped to an appropriate UML class 
diagram. One can input metamodels directly in the form of an eCore model, or one 
can use annotated Java code, UML class diagrams, or model descriptions in XML. 
EMF is capable of transforming models from one of those representations to any 
other via the eCore model. Also, the EMF framework offers automated support for 
persistence to files, maintaining references and a system of notifications regarding 
changes in model elements. A graphical library exists that makes dealing with 
models easier. 

A.2 Metamodel of SystemCSP design domain  
In SystemCSP there are two basic types of graphical elements: nodes and 
connections. Nodes are for instance event ends, processes (component is a kind of 
process) and control flow operators. Graph connections (GraphConnection class 
in Figure A-2) are binary relationships between graph nodes (GraphNode class in 
Figure A-2), meaning that every graph connection relates exactly two graph nodes. 
Every node can have zero or more connections associated. Types of connections 
present in SystemCSP diagrams are: prefix operator (PrefixArrow class), 
interaction (or event synchronization) connection (SyncConnection class), 
refinement relationship (RefinementRel class) and binary compositional 
relationships (BinaryComposRel class). In addition, any graphical element (be it 
a node or a connection) can have a label (Label class) associated. All mentioned 
basic abstractions as well as described relationships between them are captured in 
the form of UML class diagram in Figure A-2. 

 
Figure A-2 Basic abstractions in SystemCSP design domain 
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Each connection in the graph relates two node elements. In some cases like for the 
prefix arrow type of connection, a connection has a direction that determines the 
order in which two related node elements are executed. In diagrams, the order is 
visible from the direction of prefix arrow. In the model, the order is represented via 
making distinction between source node and target node association ends.  

Note that the design of the metamodel is somewhat influenced by its associated 
visual representation. For instance, a prefix arrow is seen as a connection that 
connects two node elements, although from a semantic point of view it is a control 
flow element equally as fork or join elements of various types.  

A.2.1 Event ends 

In Figure A-3 (originally appeared as Figure 3-4 in section 3.1.2), three 
cooperating processes are depicted.  

 
Figure A-3 Example that illustrates using event related abstractions 

Let us try to identify abstractions and instances of abstractions present in this 
diagram.  

First, there is a process entry label for every one of those processes. A choice is to 
create an abstraction of type ProcessLabel.  

The process labels (see Figure A-4) can play one of the two roles: a recursion entry 
point and a recursion process label. The difference between those two ways of 
using process labels is in model made by introducing attribute ‘type’. The choice to 
use same abstraction for both purposes reflects the fact that the same symbol is 
used, and allows reusing of process labels. Process label does carry the name of the 
process, so a ProcessLabel abstraction has attribute name. 
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Figure A-4 Process labels 

A process entry point is used to mark the named place at a control flow that can be 
used as a point to return to in a recursion. A recursion process label is a point in the 
control flow where a jump to the recursion entry point is made. As a consequence, 
for each recursion entry point, there can be any number (zero or more) of recursion 
point labels associated and for every recursion process label there can be exactly 
one recursion entry point to point to. Since ProcessLabel is a kind of 
GraphNode, it can be related to other GraphNode elements via 
GraphConnection elements (i.e. in this case via PrefixArrow elements). 

SystemCSP diagram  given in Figure A-3 contains set of different types of event 
end objects.  So we define a class EventEnd with the attribute name. Event is in 
diagrams defined implicitly by the existence of more then one event-end with the 
same name. Thus, another class would be Event. The event ends can be of 
different types (INITIATOR, ACCEPTOR, READER, WRITER) so the event end 
also has the attribute type. One can further observe that on Figure A-3, event ends 
are related via dashed line connections. The abstractions representing that type of 
connections is in Figure A-2 already defined as SyncConnection. Furthermore, 
events ‘ev1’ and ‘ev2’ in the example from Figure A-3 are in fact channels used 
for data communication. Thus, a Channel abstraction is necessary as a special 
kind of Event abstraction, and a ChannelEnd abstraction as a special kind of a 
EventEnd abstraction. Next, a way is needed to specify set of communication 
flows on each channel. To make things configurable and flexible we choose to 
make an abstraction DataFlow and to chain such abstractions when needed. 
Further, the direction of every instance of the DataFlow abstraction can be set as 
either input or output, so we introduce an attribute ‘direction’. Every instance of 
the DataFlow abstraction is associated with some component variable from 
which/to which it reads/writes data. Thus, an abstraction representing component 
variable is needed as well.  

Note also that in accordance with the part of design domain metamodel defined in 
Figure A-2, a label can be associated with any graphic element. For instance, labels 
displaying channel names and data flows are associated in Figure A-3 with channel 
ends, while the label activate_P3 is associated with a SyncConnection object and 
not with event ends. 

Instances of predefined EXIT event-ends (equivalent to specifying a SKIP process 
in CSP) are used for successful termination of processes P1 and P2 and P3.  

Figure A-5 illustrates part of the object diagram that captures the instances and 
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structural relationships of abstractions as needed for the implementation of the 
model for the design given in Figure A-3. 

 
Figure A-5 Part of the object diagram capturing an example of the previous figure 

Figure A-6  introduces class diagram that captures the abstractions and associated 
structural relationships derived from the previous reasoning. Any event-end can be 
associated to exactly one event, while each event has associated at least one event-
end. This is in class diagram in Figure A-6  specified via multiplicity numbers on 
the ends of the association relating the Event abstraction with the EventEnd 
abstraction. A Channel-end is a special type of event-end that differs from an 
event-end by allowing the possibility for data communication. Every channel is 
related to exactly two channel-ends, and every channel-end has exactly one 
channel associated. Again, this is in class diagram expressed by specifying 
multiplicity numbers on the association ends. Data communication might consist of 
several data flows, and any particular data flow can either perform input of data or 
output of data. The direction of a data flow is determined by the direction 
attribute. In channel-end, a data flow from/to channel is always related to exactly 
one variable and for every variable there is zero or more related data flows.  
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Figure A-6 Event related abstractions of the metamodel 

A.2.2 Control flow elements  

Elements with direct mapping to CSP 

Figure A-7 is an example which contains a code block,  9 prefix arrows, 4 event-
ends (1 predefined start event-end and 3 channels each with associated instance of 
the data flow entity), 5 process label instances (2  recursion entry points and 3 
recursion process labels). Existence of the component-level variable count is also 
implied. The new elements compared to previous diagrams are: an instance of the 
IF control flow element and an instance of the guarded alternative control flow 
element. 

 
Figure A-7 Example that illustrates using control flow elements 

Figure A-8 depicts a part of the metamodel introducing several control flow 
elements, some of them needed in design for making a model of the design from 
Figure A-7. IF  control flow element allows conditional branching of control flow. 
In case the given condition evaluates to true, then the control flow branch (prefix 
arrow leading from this IF element to some other graphic node element) associated 
with the true value is followed, otherwise the other branch is followed. Note that 
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although the ‘conditions’ for IF control flow elements are expressions that evaluate 
to boolean, in the model belonging to design domain they are captured as strings. 
The switch control flow element is a generalization of the IF control flow element, 
allowing multiple switch conditions and associated branches. Every condition 
variable is associated with a branch to be followed when condition is satisfied. 

 
Figure A-8 Some control flow elements 

Abstraction representing a guarded alternative contains data members for guarded 
event ends and for associated logical conditions. The guarded alternative control 
flow element participates in the synchronization mechanism on the behalf of the 
event-ends it is guarding. 

The renaming operator specifies renaming rules as a set of strings containing pairs 
of old and new names. The hiding operator maintains the list of events that are 
hidden, i.e. not exported to a higher level of abstraction in the process hierarchy. 

Start/exit control flow elements 

In the example given in Figure A-9 (appeared as Figure 3-15 in section  3.2.1, we 
can first identify elements already mapped to the previously introduced 
abstractions:  process label P1, process blocks P, T, Q and R, event-end ‘ev1’ and 
prefix arrow elements.  In addition in this figure, some pairs of start/exit control 
flow elements appear. We can observe two pairs of START SEQ and STOP SEQ 
and one pair of FORK PAR and JOIN PAR control flow elements.  

In this diagram instead of real nodes representing START SEQ and STOP SEQ 
control flow elements, the abbreviated form is used by associating their symbols 
with prefix arrows. In that way, instead of one block and two prefix arrows, only 
single prefix arrow is depicted, saving the space. In model however, all those 
elements do exist, they just have a special flag (‘hidden’) set to avoid visualization. 
Thus in this example there are in total more prefix arrow objects in model then 
visible in diagram.  
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Figure A-9 Example illustrating usage of abstractions related to basic CSP operators 

Figure A-10 illustrates the FORK and JOIN control flow elements elements related 
to basic CSP operators. It also illustrates the fact that every pair of FORK and 
JOIN elements is in fact making a construct. The area with constructs is shaded, 
because it is not directly visible on diagrams.  

 
Figure A-10  Abstractions of control flow elements related to basic CSP operators 

A pair of fork and join control flow elements of the same type, as the ones given in  
Figure A-9, maps to a basic CSP operator (Parallel, sequential, external, internal 
choice). Where in CSP expressions a scope of the operator is defined by brackets, 
in control flow based SystemCSP diagrams, instead of operator with scope limited 
by brackets, a pair of FORK and JOIN elements exists. Since in practice each 
fork/join pair is representing a single CSP operator, fork and join elements making 
a pair are related via the Construct abstraction of the appropriate type. 
Construct abstraction is not visualized directly on diagrams. However, it is 
essential abstraction for resolving grouping of fork and join elements and also for 
grouping binary relationships. In this way special types of constructs for each CSP 
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operator are introduced that contain exactly one fork and exactly one join element 
(see the multiplicity of the association). In addition, all types of constructs are 
types of a generic abstraction named Construct. Parallel construct needs 
to keep track of events on which its subprocesses do synchronize. From that 
reason, ParallelConstruct abstraction contains attribute syncEvents 
representing the list of events on which its subprocesses do synchronize. 

Advanced fork/join control flow elements 

Same functionality is in left side of the Figure A-11 specified via take-over 
operator and on the right side via timed interrupt operator.  

 
Figure A-11 Time related operators 

Timed interrupt operator and timeout operator are built on top of take-over 
operator and timing subsystem supporting watchdog interaction contract, as 
explained in section 4.1.3. The question is how to represent those compound 
operators in the model. Left-hand side of Figure A-11 defines four instances of 
event-end abstraction, two process blocks, a pair of fork and join take-over 
operator, process entry label, prefix arrows and EXIT event-end.  The one on right-
hand side has only one instance of event-end abstraction and has a pair of instances 
of fork and join timed interrupt operator.  

The model of timed interrupt should, however, allow for expansion from 
abbreviated form as in right-hand side of the Figure A-11 to the expanded one as 
the one on left-hand side of the Figure A-11. Thus, in case when abbreviated form 
based on derived time related operators (timeout operator and timed interrupt 
operator) are used, the associated model will need to have specified all data 
necessary to perform expansion to the equivalent representation based only on 
basic untimed operators. In model, the data needed for this transformation is kept 
in data members of instances of fork operator abstractions. Except for the model 
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transformation, this data is for instance needed when converting design to CSPm 
script.   

Figure A-12 captures abstractions related to control flow elements of the 
SystemCSP design domain related to the take-over operator (equivalent to interrupt 
operator of CSP) and time related operators. Those operators are in SystemCSP 
diagrams represented by an appropriate pair of fork and join symbols. In the 
model, in addition, for each pair of fork and join operators, there is an instance of 
appropriate type of construct. 

 
Figure A-12 Abstractions related to take-over and timed based  operators 

Fork control flow elements from Figure A-12 contain as properties their operands 
and additional elements needed for expanding the compound operator into a set of 
basic lower-level elements. For the takeover operator important parameters are 
guardedProcess, exceptionHandlerProcess and the event (abort event) that is used 
to initiate the take-over.  

Part of timeout operator specification are its operands – the guarded event and the 
alternative process that will be executed in case that timeout expires before 
guarded event takes place.  

Timed interrupt operator has two operands - the guarded process, and the take-over 
process which will takeover the execution of the guarded process when timeout 
expires. 

For both time based operators, timeout specification needs to be specified. Due to 
building those operators on top of the watchdog design pattern, the hit and 
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timeout events are used as points of connection to the associated watchdog and 
underlying timing system. 

A.2.3 Binary compositional relationships  

 
Figure A-13 Example of using binary compositional relationships 

In Figure A-13 (repeated from section 3.4.2) two interaction-oriented views are 
depicted on left hand side and their control flow representation is depicted on the 
right-hand side. In interaction-oriented view, components are related via binary 
compositional relationships. Note that as depicted on the right-hand side of this 
figure, in finalized designs all binary compositional relationships are resolved into 
control flow elements and thus into appropriate constructs.  

Figure A-14 illustrates the relation between binary relationships belonging to the 
domain of data flow oriented view of SystemCSP (a part of SystemCSP that 
origins in GML) and the appropriate construct abstractions as existing in final 
designs. Additional attribute defines the strength of the relationship, that is whether 
the relationship is of type: WEAK, START, EXIT or STRONG. 
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Figure A-14 Abstractions defined for binary compositional relationships of SystemCSP 

A.2.4 Components and processes 

 
Figure A-15 Example with binary relationships and abstractions related to components 

In the system depicted in Figure A-15, a user-defined component interacts with 
timing subsystem via the watchdog interaction contract.  Role specifications and 
role implementation ports are created with names ‘timer’ and ‘wd user’. Role 
implementations are associated with appropriate component instances, while role 
specification ports are related with the interaction contract. Compositional binary 
relationships of types parallel and interleaving parallel are specified between 
participating instances of components and interaction contract.  

Figure A-16 introduces abstractions related to the part of SystemCSP notation 
related to components.  

Basic unit of composition in CSP and SystemCSP is a process. In SystemCSP in 
addition, several special kinds of processes exist: process blocks, non-interacting 
processes, code blocks, constructs and components.  

Non-interacting process is a special kind of process block that does not interact via 
events with its environment. In general case, it can internally contain subprocesses 
and event synchronizations. It has a symbol somewhat different then the one of 
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process block.  A Code block is a special kind of non-interacting process that 
contains only pure computation code without any event synchronizations internally 
or externally.  

Construct is a kind of process that composes involved subprocesses via one of the 
CSP operators and is object of further composition.  

 
Figure A-16 Abstractions related to component based software engineering 

Component is a kind of process that can own zero or more (note the multiplicity of 
the related “part-of” relationship) other processes (including process blocks, 
constructs and other components). Interaction contract is a special kind of 
component that is dedicated to managing interaction among some other 
components.  

Variables defined on the level of the component (CompVariable class) are part of 
SystemCSP model. Those variables are owned by component and used by its 
subprocesses. Process blocks can in addition specify additional variables that are 
part of their description and not directly reflected with dedicated abstraction in the 
metamodel. 

Every component is in contact with the rest of the world via access points known 
as ports. A port is in fact related to some interface (e.g. of a role or a function), or 
to some event/channel. Hence a difference is made between interface ports and 
event ports.Two kinds of interface ports exist: required interface and provided 
interface.  

Both interaction contract and component can have both kinds of roles/ports. In 
interaction contracts, however, role specification and associated required interface 
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type of port is more common due to the function of interaction contract to relate 
components that provide different services.  

A.2.5 Supervision elements 

Figure A-17 displays abstractions related to the supervision of an application. As 
explained in chapter 3, associating supervision elements (logging and tracing 
points) with prefix arrow elements, allow us to view all supervision elements as a 
separate layer, which is normally hidden in visual representation, but can be 
displayed if required.  

Every supervision point has ID unique in the scope of its parent component. 
Debugging point is used to specify points when the execution of the debugged 
application is halted. A logging point is a point in control flow where logging of 
the timestamp and of the chosen component’s variables is performed. A tracing 
point reports only timestamp and ID and is used to track whether certain point in 
control flow was reached in actual execution and when.  

For the point of view of logging, it is possible to define bit field that specifies 
which component variables are logged and which are not. If logging point does not 
specify such a bit field, then the default one defined on the level of the component 
is used. Note that properties like timestamp for supervision point and value for 
component variable are essentially implementation and not design issues. 
However, we make them part of the design domain metamodel in order to provide 
support for displaying data obtained as a feedback from the application executing 
on target.  

 
Figure A-17 Abstractions related to application supervision elements 
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B Software framework design 
Section B.1 starts with a discussion focused on the possibility to reuse the CT 
library, developed at our lab, as a target domain framework for code generation. 
After discarding the possibility to reuse the CT library, the discussion about the 
basic design principles for a new library starts in Section B.2 with investigating 
practical possibilities for implementing concurrency.  A flexible architecture is 
proposed that allows a designer to make trade-offs regarding the used structure of 
execution engines. A design of component internals is introduced, that allows 
subprocesses to access variables defined in parent components and offers a way to 
reuse processes in same way as components. Section further explains the way in 
which function-call based concurrency is applied to structure concurrency inside 
components. An example is given illustrating how this mechanism actually works.  

Section B.3 explains a synchronization mechanism designed to handle CSP kind of 
events with any number of participants and with some of them possibly 
participating in several guarded alternative constructs. A special problem that was 
solved related to this was achieving mutual exclusion when event ends and the 
associated synchronization points are potentially scattered in different operating 
system threads or on different nodes.  

Section B.4 introduces design of a mechanism that implements exception handling 
and of mechanisms that provide support for logging and tracing.   

B.1 Why yet another CSP library? 
In this section, we focus on a possibility to reuse the CT library, the occam-like 
library developed in our lab, as a framework for the software implementation of 
SystemCSP models. The CT library follows the occam model as far as possible. 
SystemCSP builds upon the CSP legacy. It does in addition introduce new 
elements related to the area of component-based engineering. However, those 
newly introduced elements are: 1) components and interaction contracts that both 
map to CSP processes and 2) ports that are just event-ends exported by such CSP 
processes.  

In fact, SystemCSP defines auxiliary design time operators like the fork and join 
control flow elements and binary compositional relationships of FORK, JOIN, 
WEAK and STRONG types. Those auxiliary operators do exist only during the 
design process and are therefore after grouping, in mapping to CSPm target 
domain substituted with CSP operators, and in mapping to software 
implementations with constructs like the ones existing in occam and CT library.  

Basic SystemCSP control flow elements and binary relationships do map to the 
constructs as it is the case in the CT library. However, since SystemCSP aims to 
correspond exactly to CSP, it cannot be implemented completely by occam-like 
approaches that do put only restricted part of CSP into practical use. Following text 
will explore those differences in more details. 
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In the CT library, like in its role-model occam, a Parallel construct spawns 
separate user-level threads for every subprocess. Synchronization points are 
defined by channel interconnections. The SystemCSP design domain allows both 
the CSP way of event synchronization (through a hierarchy of processes), and the 
occam-way with direct channel interconnections. Thus, a software implementation 
of SystemCSP designs needs mechanism for the hierarchical CSP way of event 
synchronization.  

In SystemCSP, as in CSP, data communication over a channel can be 
multidirectional involving any number of data flows. The CT library, as occam, 
has only unidirectional channels. In addition, those channels are strongly typed 
using the template mechanism of the C++ language and as a consequence, they are 
not flexible enough to be reused in constructing the support for multidirectional 
communication. Thus, the channel framework of the CT library is not reusable. 

The CT library implements the Alternative construct as a class whose behavior is 
based on the ideas of the occam ALT construct. The implementation of the 
Alternative construct (Orlic and Broenink, 2004) allows several different working 
modes (preference alting, PriAlternative, fair, FIFO), introduced to enable an 
alternative way to make a deterministic choice in case when more then one 
alternatives are ready for execution at the same time. The alting in CT library 
assumes that a channel can be guarded by some alternative construct only from one 
of the exactly two event-end sides (there can be either an input or an output guard 
associated with a channel).  A guarded channel is just a channel with an associated 
guard. A guard is an object inside an alternative construct associated with a 
channel and a process. When a guarded channel is accessed by the peer process, 
the guard becomes ready and is added to the alting queue. The way in which 
guards are ordered in this queue, determines the working mode (preference alting, 
PriAlternative, fair, FIFO) of the alternative construct.  An alternative construct is 
thus a single point where the decision of a choice is made. 

The SystemCSP design domain makes a difference between an external choice and 
a guarded alternative operator and in that sense adheres strictly to CSP. Thus, an 
implementation is needed that can support both. Event-ends contained by a 
guarded alternative or the ones resolving the parent external choice operator need  
to delegate their roles in the process of CSP event synchronization to the related 
guarded alternative or external choice operator. In case when, in an event 
occurrence, any number of guarded event-ends can participate, the whole alting 
mechanism must be completely different then the one applied in CT library.  This 
means that in fact for CSP event synchronization mechanism completely different 
implementation of alting needs to be implemented. Thus again in this respect too, 
the CT library is not useful. 

Simple CSP processes, made out of only event synchronization points connected 
via the prefix and the guarded alternative operator, are often visualized using a 
Finite State Machine (FSM). With the guarded alternative of CSP, no join of 
branches is assumed, and the branches can lead to any other state. The occam/CT 
library choice (ALT construct) requires that all alternatives are eventually joined. 
Thus a natural FSM interpretation is not possible anymore. For SystemCSP, the 
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ability to implement FSM-like designs in a native way is especially important. 
Thus, implementation of the guarded alternative operator should not assume the 
join of branches.  

In addition, it should be possible to use process labels to mark process entry points 
and allow recursions other then repetitions as in the SystemCSP design domain. 
Since in occam and the CT library, processes are structural units like components 
in SystemCSP, the use of recursion different then a loop is not natural there. A 
strict tree hierarchy of processes and constructs as basic architecture design pattern 
of occam and CT library is a misfit for our purpose.  Thus, again the CT library 
does not meet the requirements imposed by SystemCSP. 

In fact, instead of processes as structural units arranged in strict tree hierarchy, 
flexibility can be introduced by using classes for implementation of some 
processes (i.e. process blocks and components) and functions and labels for other 
processes. For instance, a single FSM-like design can contain many processes that 
in fact do only name the relevant points in control flow. Certainly, those processes 
cannot map to the occam notion of process. They are more convenient to be 
implemented as labels, while the whole finite state machine is convenient to 
implement inside a single function.  

In addition, SystemCSP is intended to be used as a design methodology for design 
and implementation of component-based systems. This needs to be supported by 
introducing appropriate abstractions and also possibilities for easy reconfiguration, 
interface checking, and so on.  

To conclude, the mismatch between the CT library and the needs of SystemCSP is 
to big to allow reusing the CT library as a framework for the software 
implementation of SystemCSP designs. 

B.2 Execution engine framework 

Brief overview of execution engines  

Concurrency in a particular application assumes the potential for parallel existence 
and parallel progress of the involved processes. If processes are implemented in 
hardware, or if each of the processes is deployed on a dedicated node, these 
processes can truly progress concurrently.  In practice, multiple processes often 
share the same processing unit.  

Operating systems provide users with the possibility to run multiple OS processes 
(programs). Every OS process has its own isolated memory space and its own set 
of allocated resources. Within OS processes it is possible to create multiple OS 
threads that have their own dedicated workspaces (stack), but share other resources 
with all threads belonging to the same process. Synchronization in accessing those 
resources is left to the programmer. OS synchronization and communication 
primitives (semaphores, locks, mutexes, signals, mailboxes, pipes…)(Tanenbaum, 
2001) are not safe from concurrency related hazards caused by bad design. OS 
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thread context switch is heavyweight, due to allowing preemption to take place at 
any moment of time. 

User-level threading is an alternative approach that relies on creating a set of own 
threads in the scope of a single OS thread. Those threads are invisible to the 
underlying OS-level scheduler and their scheduling is under the control of the 
application. The main advantages compared to OS threads are the speed of context 
switching and gaining control over scheduling. The use of Operating System calls 
from inside any user-level thread is blocking the complete OS thread with all 
nested user-level threads (blocking operating system call problem).  

Another approach is to implement concurrency via function-calls, where the 
concurrent progress of parallel processes is achieved by dividing every process into 
little atomic steps. After every atomic step, the scheduler gets back control and 
executes the function that performs the next atomic step in one of the processes. 
There is no need to dedicate a separate stack for every process. Steps are executed 
atomically and cannot be preempted.  A function-calls based approach is often 
used to mimic concurrency in simulation engines. There is even an operating 
system (Portos (Chrabieh, 2005)) that is based on scheduling prioritized function 
calls.  

Discussion 

SystemCSP structures concurrency, communication and synchronization using 
primitives directly coupled to appropriate CSP operators. To implement concurrent 
behavior, it is possible to use any of the previously described approaches.  

The CT library is based on user-level threading. Every process in the CT library 
that can be run concurrently (i.e. every subprocess of the (Pri)Parallel construct) 
has a dedicated user-level thread. A scheduler exists that can choose the next 
process to execute according to the hierarchy of Parallel/PriParallel constructs. As 
in occam, rendezvous channels are the basic communication and synchronization 
primitives. Possible context switching points are hidden in every access to local 
channels.  

The first important issue related to the SystemCSP framework is what type of 
execution engine is best to choose. Actually, the optimal choice depends on the 
application at hand and is a compromise between the level of concurrency, the 
communication overhead and other factors. The best solution is, therefore, to let 
the designer choose the type(s) of execution engines on which the application will 
execute.  A way to do this is to separate the application from the execution engines, 
and to let the designer map the components of his application to the underlying 
architecture of execution engines.  

Four- layer execution engine architecture  

An application is in SystemCSP organized as a containment hierarchy of 
components and processes. A component is the basic unit of composition, 
allocation, scheduling and reconfiguration. Inside every component, contained 
components, processes and event-ends are related via CSP control flow elements 
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(sequential, parallel, choice …). While a subprocess is inseparable part of its parent 
component, a subcomponent is independent and can for example be located on 
some other node.  

As a result of the previous discussion, flexible execution engine architecture is 
proposed, that allows the user to adjust the level of concurrency to the needs of the 
application at hand. The execution engine architecture is hierarchical, based on 
four layers: node/OS Thread/UL thread/component managers. Any component can 
be assigned to any execution engine on any level in such a hierarchy.  

The class diagram given in Figure B-1 defines the hierarchy of the execution 
engines. In the general case, inside an operating-system thread, a user-level 
scheduler exists, which can switch context between its nested user-level threads. 
Inside a user-level thread is, in the general case, a component manager that can 
switch between the contained components. Every component has an internal 
scheduler that will use a function-call based concurrency approach to schedule 
nested subprocesses.  

 
Figure B-1  Class diagram of the 4-layer execution engine framework 

Internalizing the scheduler inside every component allows more flexibility in the 
sense that some levels in the 4-layer architecture can be skipped. The concurrency 
of the node execution engine can be delegated to operating system threads or to 
user level threads or to component managers or it can execute a single component 
directly without providing support for lower-level execution engines. It is even 
possible to have a single component per node. Similarly operating system threads 
can execute a set of user level threads, or a component manager or a single 
component. A user-level thread is able execute just a single component or a set of 
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components via the component manager. The possibility to choose any of those 
combinations is actually reflected in Figure B-1.  

The OS thread execution engine is in fact representing the scheduling mechanism 
of the underlying operating system. Therefore, in the design domain this class 
contains the name and version number of the used operating system as attributes. 
In software implementation, there is no matching class since implementation is 
provided by the underlying operating system. The OS thread class in the software 
implementation domain does have a dedicated subclass for every supported 
operating system. In that way, the portability is enhanced by isolating platform-
specific details in the implementation of subclasses. Auxiliary abstract classes 
LessThenodeExecEng, LessThenOSThreadExecEng and LessThenUL-
ThreadExecEng are.introduced to enable the described flexibility in structuring the 
hierarchy of execution engines.   

Allocation 

An allocation procedure as the one depicted in Figure B-2 (below here), is a 
process of mapping components from the application hierarchy of components to 
the hierarchy of execution engines.  

 

 

 

 
 

Figure B-2  Allocation = mapping from application to execution engines 

The criteria for the choice of the execution framework and for the allocation, is 
setting the proper level of concurrency while optimizing performance by 
minimizing overhead. Two components residing on different nodes can execute 
simultaneously. Two components allocated to the same node, but to different 
operating system threads can be executed simultaneously only in the case of multi-
core or hyper-threading nodes. Communication overhead between two components 
is directly proportional to the distance between the execution engines that execute 
them.  
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Control flow (as specified by parallel, sequential and alternative constructs) is 
decoupled from its execution engines. As a result, components can be reconfigured 
more easily. A component can be moved from one (node, operating-system thread, 
user-level thread) execution engine to another. Components can be dynamically 
created, moved around and connected to interaction contracts. On dynamical 
reconfiguration, checking compatibility of the interface required by the interaction 
contract with the interface supported by the component is done.  

Priority assignment   

CSP is ignorant of the way concurrency is implemented. Concurrency phenomena 
involving parallel processes interacting via rendezvous synchronizations are the 
same regardless whether concurrent processes are executed on dedicated nodes, or 
sharing CPU time of the same node is done according to some scheduling 
algorithm.  However, temporal characteristics are different in these two cases. The 
most commonly applied scheduling schemes are based on associating priorities 
with processes. In real-time systems, achieving proper temporal behavior is of 
utmost interest. Therefore, in real-time systems priorities are attached to 
schedulable units according to some scheduling algorithm that can guarantee 
meeting time requirements.  

In addition to the PAR (parallel) construct, in occam a prioritized version of the 
parallel construct, the PRIPAR construct, was introduced. It specifies parallel 
execution with priorities assigned according to the order of adding subprocesses to 
the construct. However, on transputer platforms only two priority levels were 
supported. Additional priority levels were sometimes implemented in software 
(Sunter, 1994). 

Following occam, the CT library introduces a PriParallel construct with the 
difference that inside one PriParallel up to 8 subprocesses can be placed. While all 
subprocesses of a Parallel construct have the same priority, priorities of processes 
inside a PriParallel are based on the order in which they are added to the construct. 
This allows for a user-friendly priority assignment based on the notion of the, more 
or less intuitive, relative importance of a process compared to the other processes. 
The PriParallel construct is as any other construct also a kind of process, and 
as such it can be further nested in a hierarchy of constructs. This leads to the 
possibility to use a hierarchy of PriParallel and Parallel constructs to create 
a program with an unbounded number of different priority levels. Note however, 
that priority ordering, of all processes in a system, if defined in this way is not 
necessarily a strict ordering, but rather a set of partial orderings. If only PriParallel 
constructs were used, a set of partial orderings results in global strict priority 
ordering. 

As in execution-engine architecture issues, where the conclusion was that 
flexibility can be achieved by separating hierarchy of components belonging to the 
application domain, from the hierarchy of execution engines, the similar reasoning 
applies to specifying priorities. The PriParallel construct of the occam-like 
approaches is hard-coding priorities in the design, where a intuitively priority 
assignment is related to the execution of processes on the real target architecture. 
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Priority values are in fact the result of a trade-off due to temporal requirements that 
belong to the application domain and processing time that belongs to the domain of 
underlying architecture engines. Therefore, the choice is not to follow the occam-
like approach. Priorities belong to the execution engine framework and not to the 
application framework. Instead of relative priorities in each Parallel construct, a 
component from application hierarchy of components can be mapped to the 
execution engine of appropriate priority.  

Every operating-system thread has a priority level used by the underlying 
operating-system scheduler to schedule it. Every user-level thread has its own 
priority level which defines its importance compared to the other user-level threads 
belonging to the same operating-system thread. In this way, a 2-level priority 
system exists and any component can be assigned to the pair of operating-system 
thread and user-level thread with appropriate priority levels  

Note that the priorities specified on higher levels in an execution engine hierarchy 
overrule the ones specified on lower levels. This is the case because a higher-level 
execution engine (an operating-system execution engine) is not aware of the lower-
level schedulable units (e.g.  a user-level thread).  

A problematic situation occurs when two components of different user-level thread 
priorities are allocated to two different operating-system threads of the same 
operating-system thread priority. In that case, it can happen that advantage is given 
to the component that has a lower user-level thread priority. In case when such a 
scenario should be avoided, two components with the same operating-system 
thread priority should always be in the same operating-system thread. In other 
words, this problem is avoided when there are no operating-system threads of the 
same priority on one node.  

An additional issue is priority inversion that happens when a component of higher 
priority interacts with one of lower priority via rendezvous channels. Chapter 4 
deals with those issues in more details. 

Components, processes and variables  

The UML class diagram in Figure B-3 illustrates the hierarchy of classes related to 
the internal organization of components. Every component has an internal 
scheduler that can handle various schedulable units (construct, processes, guarded 
alternative operators and event ends).  

Variables are in SystemCSP defined in the scope of the component they reside in, 
and should be easily accessible from subprocesses of that component. A 
subprocess is allowed to access the variables defined in its parent component, but 
subcomponent cannot – because a subcomponent can be executed in a different 
operating-system thread or even on a different node. Instead of defining actual 
variables, the process class does define references to these variables (see Figure 
B-3). Those references are in the constructor of the process associated with real 
variables defined in the scope of the component. In this way, subprocesses can 
access variables defined in components without restrictions; Component 
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definitions are divided into smaller parts that are easier to understand and processes 
become as reusable as components are.  

 
Figure B-3  UML class diagram illustrating scheduling units 

Subcomponents that are executed in different execution engines do have associated 
proxy subporocess in their parent component (see Figure B-4). In that way, the 
synchronization between the remote subcomponent and its parent component is 
done indirectly via that proxy process. The Proxy process and remote 
subcomponent synchronize on start events and termination events via regular 
channels.  

 
Figure B-4  Using proxy processes to relate remote subcomponents 
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Function call-based concurrency inside components 

The class diagram in Figure B-3 defines that each component contains an internal 
scheduler. The dispatcher of a component is in its execute() function. It will use a 
scheduling queue (FIFO or sorted queue) to obtain the pointer to the next 
schedulable unit ready to be executed.  

Every schedulable unit inside a component is implemented as a finite-state 
machine that performs one synchronization and computation step per each function 
call, and subsequently returns control back to the component scheduler. The 
current place where the schedulable unit stopped with its execution is remembered 
in its internal state variable. When the schedulable unit is activated a next time, it 
will use this value to continue from where it had stopped.  Every schedulable unit 
does have associated a pointer to the next schedulable unit to activate when its 
execution is finished. This is either its parent construct or the next schedulable unit 
in sequence (if the parent is a sequential construct).  

Every construct exists inside some parent component. Constructs (Parallel, 
Alternative and Sequential) as well as channel/event ends are designed as 
predefined state-machines that implement behavior expected from them.  

For instance, a simplified finite state machine implementing the Parallel construct 
would have two states: one with forking subprocesses (the FORK state in code 
snippet bellow), and one waiting for all subprocesses to finish (JOIN state in the 
code snippet). In reality, a mechanism for handling errors and exceptional 
situations requires one or two additional states. 

 
Parallel::run(){ 
 switch(state){ 
  case FORK: 
   parentComponent->scheduler->add(subprocesses); 
   state = JOIN; 
   result =0; 
   break; 
  case JOIN: 
   if(finishedCount == size)  
   { 
    state = FORK; 
    finishedCount=0; 
      parentComponent->scheduler->add(next); 
    result =1; 
   } 
   break; 
 } 
 return result;    
}  
 
Parallel::exit() { 
 finishedCount++; 

 if(finishedCount ==size) parentComponent                        
                             ->scheduler->add(this); 

} 
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The subprocesses use the exit() function to notify the Parallel construct that they 
have finished their execution. Since all subprocesses are in the same component 
and executed in atomic parts in function-call based concurrency manner, there are 
no mutual exclusion hazards involved.  

When a construct finalizes successfully its execution, it returns a status flag equal 
to 1 or higher. For its parent it is a sign that it can move to the next phase in its 
execution by updating its state variable. In case of a guarded alternative, the 
returned number is in the parent process understood as the index of the branch to 
be followed and it is used to determine the next value of the state variable.   

Thus, the system works by jumping in a state-machine, making one step (e.g. 
executing a code block or attempting event synchronization or forking 
subprocesses), and then jumping out. This might seem inefficient, but actually also 
in the user-level thread situation, a similar thing is done: testing the need for a 
context switch is hidden in every event attempt. Only performance testing can 
show which way is actually more efficient under what conditions. Recursions that 
are used to define auxiliary, named, process entry points are not implemented in a 
separate class. Instead they are naturally implemented using labels. 

Let us use the example given in SystemCSP (Figure B-5), and also in CSPm code 
above the figure to display how its software implementation would look like in this 
framework. 
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Figure B-5  SystemCSP design used as an example for software implementation 

The code is as follows: 
Program(){ 
 switch (state){ 
  case START:  
     status = install->sync(); 
     if(status == 0) return;    
     elseif(status == 1){  
        Installation(); 
        state = START_MENU; 
     } 
     else state = ERROR; 
    break; 
  case START_MENU: 
      status = guardedAlt_StartMenu->select(); 
      if(status == 0) return;  
      elseif(status == 1) { 
          InitializeProg(); 
          state = USE_PROG; 
     }  
   else if(status== 2) { 
       UninstallProg(); 
       state = START; 
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   } 
   else state = ERROR; 
   break; 
 case USE_PROG:  
   status = guardedAlt_UseProg ->select(); 
   if(status == 0) return; 
   elseif (status == 1) { 
       SaveDocs();  
       state = START_MENU: 
   } 
   else if (status == 2) { 
       LoadModel();  
       state = WORK; 
   }  
   else state = ERROR; 
   break; 
 case WORK: 
   status = guardedAlt_Work->select(); 
   if(status == 0) return;       
   elseif(status == 1) {  
       UpdateModel();  
       state = WORK; 
   } 
   elseif(status == 2) {  
       SaveChanges();  
       state = WORK;  
   } 
   elseif(status == 3) {  
       SaveDocDlg();  
       state = USE_PROG;  
   } 
   elseif(status == 4) { 
       SaveDocs();  
       state = USE_PROG;  
   } 
   else state= ERROR; 
   break; 
 case ERROR: 
      printf(“ process P got invalid status ”); 
   break; 
 }  
 
In the constructor of the class defining this process, objects for the contained event 
ends and constructs are instantiated. For instance, the guarded alternative named 
StartMenu is on creation initiated using the offered event ends (openProg and 
uninstall) as arguments: 
guardedAlt* StartMenu = new guardedAlt(openProg, uninstall); 
      
EventEnd* openProg = new EventEnd(parentESP); 
 
Code blocks are defined as member functions of a class that represent the process 
in which they are used. Code blocks that are used in more then one subprocess are 
usually defined as functions on the level of the component. Note that all code 
blocks (even a fairly complex sequential OOP subsystem that contains no channels, 
events and constructs) will be executed without interruption. Their execution can 
only be preempted by the operating-system thread of higher priority. As explained, 
user-level scheduling and function-call based execution engines are not fully 
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preemptive. Thus, the events that need immediate reaction should be handled by 
operating-system threads of higher priorities. 

B.3 Implementing CSP Events and channels 
Event ends are schedulable units implemented as state machines. They participate 
in the synchronization related to the occurrence of the associated event. This 
includes communicating their readiness to upper layers and waiting till the event is 
accepted by all participating event ends. This section describes in more detail how 
precisely this synchronization is performed.  

Event synchronization mechanism 

CSP events use the hierarchy of constructs for synchronization. An event end can 
be nested in any construct and it has to notify its parent construct of its activation.  

In Figure B-6, component C0 contains a parallel composition of components C1, 
C2 and C3 that synchronize on events ‘a’ and ‘b’.  Component C2 contains a 
parallel composition of C11 and C12 that synchronize on event ‘a’. The guarded 
alternative located in component C21 offers to its environment both events ‘a’ and 
‘b’. 

 

 

 

 

Figure B-6  Hierarchical synchronization of CSP events 

Every process needs to export not-hidden events further to its environment, that is 
to a higher level synchronization mechanism. Every construct in the hierarchy must 
provide support for synchronizing events specified in its synchronization alphabet. 
This synchronization is done by dedicated objects – instances of the ESP 
(EventSynchronizationPoint) class (see Figure B-7). The event-end will actually 
notify the ESP object of its parent construct about its readiness.  A guarded 
alternative offers a set of possible event ends and thus instead of signaling its 
readiness to its parent construct, it can only signal conditional readiness. 

An ESP will, when all branches under its control are ready (conditionally or 
unconditionally) to synchronize on the related event, forward the readiness signal 
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further to its parent ESP. When an event is not exported further, that construct is 
the level where the event occurrence is resolved. In that case, instead of an 
ordinary ESP object, a special kind of it exist (Event Resolution Point or ERP 
class) that performs the event resolution process. If some event ends are only 
conditionally ready, the ERP object will initiate a process of negotiation with the 
nested guarded alternative elements willing to participate in that event. When all 
event ends agree on accepting the event, ERP will notify all of them about the 
event occurrence. 

 
Figure B-7  Event synchronization point classes 

When on the top-level, in ERP, all fields, representing readiness of the associated 
branches, are ready or conditionally ready, a procedure of negotiation with sources 
of conditional readiness starts. This action results in every participating guarded 
alternative being asked to accept the event. If not previously locked by accepting 
negotiation with some other ERP, the queried guarded alternative will respond by 
accepting the event conditionally and locking till the end of the negotiation 
process. The attempt to start negotiation with already locked guarded alternative 
results in a rejection. In that case, the conditional readiness of the guarded 
alternative is canceled for that event and the negotiation process stops. When all 
guarded alternative constructs participating in the negotiation process have 
accepted the event (and are locked - rejecting other relevant events attempts), the 
ERP declares that the event is accepted by notifying all participating event ends 
(including the guarded alternatives) about the event occurrence.  However, after 
one of the involved guarded alternatives has rejected the event acceptance, the 
event attempt did not succeed and all involved guarded alternatives are unlocked. 
Guarded alternatives unlocked in this way do again state conditional readiness for 
those event ends for which it might have been canceled during the negotiation 
procedure. 

The class hierarchy defining types and relationships between event synchronization 
points is illustrated in Figure B-7. For every type of the negotiation message, the 
ESP class declares a dedicated function. In case of local synchronization, a parent 
and the related children ESPs communicate via function calls. In case that 
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synchronizing parent/child ESPs are residing in different OS threads or nodes, the 
ESP_proxy abstraction is used.  

In the table below, the list of exchanged messages is specified as an illustration of 
an attempt to synchronize participating event-ends in a scenario based upon the 
example from Figure B-6.  

Table 4 One synchronization scenario 

source destination message 

evEnd1, evEnd2 ERP1 Ready 

ALT1 ESP1 Conditionally Ready 

ALT1 ERP2 Conditionally Ready 

evEnd3 ESP1 Ready 

ESP1 ERP1 Conditionally Ready 

evEnd4 ESP2 Ready 

ERP1 ESP1 Try event 

ESP1 ALT1  Try event 

evEnd5 ESP2 Ready 

ALT1 ESP1 Accept_locked 

ESP2 ERP2 Ready 

ERP2 Alt1 Try event 

ALT1 ERP2 Refuse_locked 

ESP1 ERP1 Accept_locked 

ERP1 ESP1, evEnd1, evEnd2 event 

ESP1 ALT1, evEnd3 event 

Solving the mutual exclusion problem 

Let us assume that allocation of the application hierarchy from Figure B-6 to the 
hierarchy of execution engines is performed as in Figure B-8. Clearly, 
simultaneous access to variables, which is possible in the case of distributed 
systems and operating-system thread based concurrency, must be prevented while 
implementing the previously explained event synchronization mechanism.   

Event synchronization is more or less a generalization of the synchronization 
process used for channels. Let us therefore use channel synchronization as an 
example to show where the simultaneous access can cause problems.  
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Figure B-8  Synchronization of event ends allocated to different execution engines 

In CT, a channel is a passive object. The process that first accesses the rendezvous 
channel will be blocked (taken out of the scheduler) and the pointer to that process 
thread is preserved in the channel. The process thread that arrives secondly will 
then copy the data and add the blocked process (one that has arrived first) to the 
scheduler. In CT, there is no problem of simultaneous access because the whole 
application is located in single OS thread.  

In the SystemCSP framework, due to the possibility of using several OS threads as 
execution engines, protection from simultaneous access needs to be taken into 
account in order to make safe design.  

Problematic points for channel communication when truly simultaneous access is 
possible are: (1) making the decision who arrived first to the channel and (2) 
adding the blocked process/component/user-level thread to its parent scheduler that 
can be accessed simultaneously from many OS threads.  

Constructing a custom synchronization mechanism using flag variables is complex 
and error-prone. Besides, it is highly likely that such mechanism will fail to be 
adequate in case of hyperthreading and multi-core processors.  

Using blocking synchronization primitives provided by the underlying operating 
systems causes the earlier mentioned problem of blocking all components nested in 
an operating-system thread that makes the blocking call. Besides unpredictable 
delay, this introduces additional dependency that can result in unexpected deadlock 
situations.  It also does not provide a solution for an event synchronization 
procedure in case the participating components are located on different nodes. 

If non-blocking calls, to test whether critical sections can be entered, are used, the 
operating-system thread that comes first can do other things and poll occasionally 
whether a critical section is unlocked. However, this approach makes things really 
complicated. For instance, the higher priority operating-system thread needs to be 
blocked so that the lower priority one can get access to the CPU and be able to 
access the channel. To block only the component, which accessed the channel and 
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not the whole operating-system thread, one needs later to be able to reschedule it. 
For safe access to the scheduler from the context of another operating-system 
thread, another critical section is needed.  

The previously discussed attempts to solve the mutual exclusion problem do apply 
only for processes located in different OS threads, but on the same node. In 
essence, from the point of view of the mutual exclusion problem, an operating 
system thread is equally problematic as synchronization with parts of a program on 
another node. Thus, it is convenient if the solution for both problems relies on the 
same mechanism. 

 
Figure B-9  Using message queue based CMM 

What we propose is that every operating-system thread has an associated message 
queue (operating systems provide message queues as a way to have non-blocking 
communication between operating-system threads). Thus, every OS thread, that 
interacts with other OS threads, will contain  a control message manager (CMM) 
component that dispatches control messages (like event ready, event conditionally 
ready, try event, event accepted and similar) to message queues of other operating-
system threads and transforms the received control messages to the appropriate 
function calls. For synchronization between nodes, networking subsystem can be 
located in a dedicated operating system thread that has a similar CMM component. 
This CMM will use the networking system to dispatch control messages to other 
nodes and will dispatch control messages received from other nodes to the message 
queues associated with CMMs of appropriate operating-system threads.   
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ESP_proxy (see Figure B-7) communicates messages and addresses to local CMM, 
which further transfer it to the peer’s CMM. The peer’s CMM will then deliver the 
message by invoking direct function calls of appropriate ESP objects. 

Channels capable for multidirectional communication 

Channels are special types of events where only two sides participate and in 
addition data communication is performed. As such, channels can be implemented 
in a more optimized way then events by avoiding the synchronization through 
hierarchy. Similar optimizations can be done for barriers with always fixed 
participating event ends, shared channels (any2One, One2Any) and simple guarded 
alternatives where all participating events are channels that are guarded only on 
one side. 

One of the requirements (imposed by CSP as opposed to occam) for channels is 
that data communication can contain a sequence of several communications in 
either direction. A design choice made here is to separate synchronization from 
communication. To achieve flexible multidirectional communication, the part 
dealing with communication is further decomposed to pairs of sender and receiver 
communication objects (TxBuffer and RxBuffer) instead of using the template C++ 
language mechanism to parameterize complete channels with parameters 
specifying transferred data types, only RxBuffers and TxBuffers are parameterized.  
In this way flexibility is enhanced. Every channel end will contain an array 
consisting of one or more TX/RxBuffer objects connected to their pairs in the other 
end of the channel.  

Since TxBuffers and RxBuffers contain pointers to the peer 
TxBuffer<T>/RxBuffer<T> objects, checking type compatibility of connected 
channel ends is done automatically at the moment of making the channel 
connection. This is convenient in case when connections between components are 
made dynamically during run-time. Otherwise, design time checks would be 
sufficient. Decoupling communication and synchronization via Tx./RxBuffers is 
also convenient for distribution. 

Distribution/networking 

The CMM based design with control messages is straightforwardly extendable to 
distributed systems. In a distributed system, compared to operating-system thread 
based concurrency, besides control messages, also data messages are sent. Every 
node has a network subsystem with a role to exchange data and control messages 
with other nodes. The network subsystem takes control over RxBuffer and 
TxBuffer objects of a channel-end from the moment when the event is attempted, 
and returns control to the OS thread where the channel end is located after the data 
transfer is finished. This is done by exchanging (via the CMM mechanism) control 
messages related to location, locking and unlocking of data.  

Of course, distributed event resolution comes with a price of increased 
communication overhead due to network layer usage. But, the task of the execution 
framework is to create conditions for this distribution to take place and the task of 
the designer of a concrete application is to optimize its performance by choosing to 
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distribute on different nodes only those events whose time constraints allow for 
this imposed overhead. 

B.4 Other parts of the software design  

Exception handling 

In SystemCSP, exception handling is specified by the take-over operator related to 
the interrupt operator of CSP. The take-over operator specifies that when an event 
offered to the environment by the process specified as second operand (exception 
handler) is accepted, the further execution of the process specified as the first 
operand (interrupted process) is aborted.   

 

 

 

 

Figure B-10  Example used to explain the implementation of take-over operator 

Upon the abort event (see Figure B-10), the exception handler process is added to 
the scheduling queue of its parent component. Since the exception handler is a 
special kind of process recognizable as such by the scheduler, it is not added to the 
end of FIFO queue as other, ‘normal’ processes, but at its head. The preempt flag 
of the component manager is set to initiate preemption of the currently executing 
process. In that way, the situation where the exception handler needs to wait, while 
the interrupted process might continue executing, is avoided as much as possible.  

As illustrated in Figure B-10, the preempted process is appended to the end of 
FIFO queue of the component scheduler. If the preempted process is in fact the 
interrupted one then it will be taken out from the FIFO queue later during the abort 
procedure.   

The first step in the interrupt handler process is calling the abort() function of the 
interrupted process. The default version of abort() will cancel the readiness of all 
event ends for which the aborted process has declared readiness or conditional 
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readiness. If the process is in the scheduling queue, it will be removed from there. 
Further, if the process is a construct, abort() will be invoked for all its 
subprocesses.  

This exception handling mechanism does not influence the execution of other 
components that might have higher priority than the component where interrupted 
process resides. 

Logging 

In this framework, the design choice is to allow logging only for the variables 
defined on the component-level. The main reason is obtaining a very structured 
and flexible way of logging that allows on-line reconfiguration of logging 
parameters. Thus all data constituting the state of the component should be 
maintained in the shape of component level variable.  Every component can have a 
bit field identifying which of its variables are currently chosen for logging. The 
interface is defined that allows human operators to update this bit field at any time 
and thus change the set of logged variables. 

 
Figure B-11  Supervision elements 

Logging points are predetermined in design by associating them to prefix arrows 
and define optionally visualized layer added on top of the design. In 
implementation however prefix arrows do not exist, while logging points are 
inserted to the appropriate location in execution flow, as defined by the position of 
prefix arrow in the design. 

 Any logging point, either uses set of variables set for logging on component level 
using the described bit field mechanism, or defines its own bit field with set of 
variables to log. The operator is via the NodeManager allowed to inspect logging 
points and update their bit fields. Every logging point has a tag (or ID) unique in 
scope of its parent component, that is used to uniquely identify it. On the target 
side of the application, this tag can be a pointer to the object implementing the 
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logging point. On the operator side of the application this tag is mapped to the 
unique ID of the logging point as specified in the system design. 

The reason to opt for this kind of logging is predictability. The logging activity is 
considered to be part of the design and all the needed resources (e.g. CPU time, 
memory, network bandwidth and storage capacity) can be preallocated. Logging 
points can in design be inserted in such a way that it is possible to reconstruct 
change of every variable during the time.   

Tracing 

Tracing is an activity similar to logging. The difference is that instead of data, the 
information communicated to the human operator is the current position in 
execution flow of the application. Control flows leading to error states are always 
traced. Errors that are not fatal for the functionality of the system are logged as 
warnings. Other tracing points can be used for debugging or for supervising 
control. As it is the case for logging, the tracing is here considered to be part of the 
design and as such performed in predefined points of the execution flow.  

SystemCSP defines a circle with a big T inside as a symbol of tracing point. Again 
it is associated with prefix arrow element, defining in that way the precise position 
of a tracing point. Every tracing point has a tag (or ID) that is unique per 
component and communicated to the operator to notify the occurrence of control 
flow passing over a tracing point. In addition, every function entry/exit is a 
potential tracing point. 

B.5 Conclusions 
This Appendix introduces design principles for the implementation of a software 
architecture that will support SystemCSP designs. This Appendix started with 
explaining the reasons to discard the possibility to reuse the CT library as a 
framework for software implementation of SystemCSP models. The rest of the text 
introduced the design principles for the implementation of the framework 
infrastructure needed in the software domain to support the implementation of a 
models specified in SystemCSP. 

One of the main contributions of this Appendix is the decoupling application 
domain hierarchy of the components (related via CSP control flow elements and 
parent-children relationship) from the execution engine framework. In addition, 
this framework is constructed to allow maximal flexibility in choosing and 
combining execution engines of different types.  In this way, flexible and 
reconfigurable component-based system is obtained. The priority specification is 
related to the hierarchy of execution engines and has thus become part of the 
deployment and not application design process.  

Another significant contribution of the text presented in this Appendix is solving 
the problem of implementing the mechanism for synchronizing CSP events in a 
way that is safe from mutual exclusion problems and is naturally suited for 
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distribution. Besides that, the text describes and documents the most important 
design choices in the architecture of the SystemCSP software framework. 

Recommendation for future work is to fully implement everything presented in this 
Appendix. Furthermore, a graphical development tool is needed that will be 
capable to generate code. The described software framework would be used as a 
basic infrastructure that supports the proper execution of generated code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

231 

References 

Allen R. J. (1997), “A Formal Approach to Software Architecture”, Doctoral 
thesis, Carnegie Mellon University, 231 pages, ISBN:0-591-64744-3, 1997. 

Amerongen J. van, Breedveld P.C. (2002), "Modelling of Physical Systems for the 
Design and Control of Mechatronics Systems", IFAC Professional Briefs, 
published in relation to the 15th triennial IFAC World Congress, International 
Federation of Automatic Control (http://www.ifac-control.org), Laxenburg, 
Austria, pp. 1-56, 2002.  

Avizienis A., Laprie J.-C., Randell B., Landwehr C. (2004), "Basic Concepts and 
Taxonomy of Dependable and Secure Computing,", IEEE Transactions on 
Dependable and Secure Computing , vol. 01, no. 1, pp. 11-33, January-
March, 2004. 

Berg L. S. van den (2006), “Design of a Production Cell setup”, Master’s thesis, 
MSc-Report 016CE2006, Control Laboratory, University of Twente, July 2006. 

Berge, M.H. ten (2005), “Design Space Exploration for Fieldbus-based Distributed 
Control Systems”, Master’s thesis, MSc-Report 029CE2005, Control Laboratory, 
University of Twente, August 2005.  

Berge, M.H. ten, Orlic, B., Broenink, J.F. (2006), “Co-Simulation of Networked 
Embedded Control Systems, a CSP-like process-oriented approach”, Proc. IEEE 
International Symposium on Computer Aided Control Systems Conference, 
Munich, Germany, pp. 434-439, ISBN 0-7803-9797-5, 2006. 

Beugnard A., Jezequel J-M., Plouzeau N., and Watkins D. (1999), “Making 
components contract aware”, IEEE Computer, Volume 32, Issue 7, pp. 38-45, 
IEEE Computer Society Press,   Los Alamitos, CA, USA, ISSN:0018-9162,  July 
1999. 

Booch G. (1993), “Object-Oriented Analysis and Design with Application”, 2nd 
[rev.] ed., The Benjamin/Cummings series in object-oriented software engineering, 
Benjamin-Cummings Publishing Company, ISBN: 0-8053-5340-2, 1993., cop. 
1994. 

Booch G., Rumbaugh J., and Jacobson I. (1999), “The Unified Modeling Language 
reference manual”, The Addison-Wesley object technology series, 550 p,  
AddisonWesley, ISBN: 0-201-30998-X. 1998, cop. 1999. 

Boosten, M. (2003), “Formal contracts: Enabling component composition”, in 
Proceedings of Communicating Process Architectures 2003, editors  J. F. Broenink 
and G. H.Hilderink,, IOS Press, pages 185–197, University of Twente, 
Netherlands, 2003.  

Broenink J. F. and Hilderink G. H. (2001), “A structured approach to embedded 
control systems implementation”, Proc. IEEE International Conference on Control 
Applications, pp. 761-766, September 5-7, México City, México, 2001. 

Burns, A. (1998), “How to Verify a Safe Real-Time System. The Application of 
Model Checking and a Timed Automata to the Production Cell Case Study”, 



232  References  

 

Technical report, Real-Time System Research Group, Department of Computer 
Science, University of York, 1998 

Buttazzo, G.C. (2002), “Hard real-time computing systems: Predictable Scheduling 
Algorithms and Applications“, The Kluwer international series in engineering and 
computer science, 379 p, Kluwer Academic Publishers, 1997, cop. 2002.    

Buttazzo, G.C. (2005), “Rate Monotonic vs. EDF: Judgment Day“, Real-Time 
Systems, 29 (1): p. 5-26(22). Jan 2005. 

Cassandras, C.G. and Lafortune S. (1999), “Introduction to discrete event 
systems”, 848 pages, Hardbound,,Kluwer Academic Publishers, ISBN 0-7923-
8609-4,  September 1999. 

Celoxica (2007),  Handel-C documentation at  http://www.celoxica.com/, 2007. 

Cervin, A. and Ekerz J. (2006), “The Control Server Model for Codesign of Real-
Time Control Systems”, in Hans Hansson (Eds.): ARTES – A network for Real-
Time research and graduate Education in Sweden 1997–2006, Department of 
Information Technology, Uppsala University, Sweden, March 2006. 

Chrabieh, R. (2005), “Operating System with Priority Functions and Priority 
Objects”, Technical report, available at: www.portos.org/doc/whitepaper.pdf, 
2005. 

Crichton, C., Cavarra, A., and Davies, J. (2002), “A pattern for concurrency in 
UML”, Technical Report RR-01-22, Oxford University Computing Laboratory. 
http://web.comlab.ox.ac.uk/oucl/research/areas/softeng/FASE2002.pdf, 2002. 

Crnkovic I.  and Larsson M., editors. (2002), “Building Reliable Component-
BasedSoftware Systems”, 454 pages, Artech House publisher, ISBN: 1580533272, 
2002.  

Davies, J. J. (2003), “Concurrency and Refinement in the Unified Modeling 
Language”, Formal aspects of computing, volume 15, issue 2-3, 2003. 

Dijjkstra E. (1972), “The Humble Programmer”, ACM Turing award Lecture, 
published in the Communications of the ACM, 1972. 

Eclipse (2007), EMF framework, available at URL: 
http://www.eclipse.org/modeling/emf/ 

Eddon G., Eddon H. (1998), “Inside Distributed COM”, 552 pages, Microsoft 
Press, ISBN:1-57231-849-X, 1998. 

Eker J., Janneck J. W., Lee E. A., Liu J., Liu X., Ludvig J., Neuendorffer S., Sachs 
S., and Xiong Y. (2003), “Taming heterogeneity—the Ptolemy approach”, 
Proceedings of the IEEE, Special Issue on Modeling and Design of Embedded 
Software, vol: 91, issue 1, pages :127-144, ISSN: 0018-9219, January 2003.  

ESI (2006), Boderc: “Model-based design of high-tech systems, A collaborative 
research project for multi-disciplinary design analysis of high-tech systems”, 
Embedded System Institute, available at URL: 
http://www.embeddedsystems.nl/site/projects/boderc/ 



References 233 

Fleming P.J. (1988), “Parallel processing in control: the transputer and other 
architectures”, IEE control engineering series, 243 pages, ISBN: 0-86341-136-3, 
Peregrinus on behalf of the Institute of Electrical Engineers, 1988. 

Formal Systems (Europe) (2005), FDR2 User Manual, at URL: 
http://www.fsel.com/software.html 

Fidge, C.J. (1993), “A formal definition of priority in CSP”, ACM Transactions on 
Programming Languages and Systems (TOPLAS), vol. 15,  Issue 4,  p. 681-705, 
September 1993 

Formal methods (2007), at URL:  http://vl.fmnet.info/ 

Gamma E., Helm R., Johnson R., and Vlissides J. (1994), Design 
Patterns:Elements of Reusable Object-Oriented Software. Addison Wesley. 

Garlan, D., Monroe, R.T, and Wile, D. (2000), “Acme:Architectural Description of 
Component-Based Systems”, in: Leavens, G.T., Sitaraman, M. (Eds.), Foundations 
of  Component-Based Systems, pp. 47-67. Cambridge University Press,  2000. 

Geilen M., Voeten J., van der Putten P., van Bokhoven L., and Stevens M. (2001), 
“Object-oriented modelling and specification using SHE”, Journal of Computer 
Languages, 27, 2001. 

Harel D. and Politi M. (1998), “Modeling Reactive Systems with Statecharts: The 
STATEMATE Approach”,  McGraw-Hill., 1998. 

Henriksson D. and Cervin A. (2003), "TrueTime 1.13-Reference Manual,", 
Technical report, Department of Automatic Control, Lund Institute of Technology, 
Lund, 2003. 

Henriksson, D., Redell O., El-Khoury J., Törngren M.  and Årzén K.-E.  (2005), 
Tools for Real-Time Control Systems Co-Design - A Survey, Internal Report, no 
ISSN 0280-5316, Department of Automatic Control, Lund Institute of Technology, 
Lund, 2005. 

Hilderink, G.H., Broenink, J.F., Vervoort, W.A., Bakkers, A.W.P. (1997), 
"Communicating Java Threads", in: 20th World Occam and Transputer User 
Group Technical Meeting, pp. 48-76. Enschede, The Netherlands, 1997. 

Hilderink G.H. (2003), "Graphical modelling language for specifying concurrency 
based on CSP", in: IEE Proceedings: Software, IEE, pp 108-120, Volume 150, 
Number 2, April 2003, ISSN 1462-5970, 2003.  

Hilderink G. H. (2005a), “Managing Complexity of Control Software through 
Concurrency”, Doctoral thesis, pages ix - 352, ISBN 90-365-2204-8, University of 
Twente, 2005. 

Hilderink G. H. (2005b), “Exception Handling Mechanism in Communicating 
Threads for Java”, in Proceedings of Communicating Process Architectures 2005, 
IOS Press,  2005. 



234  References  

 

Hilderink G. H. (2006), “Software Specification Refinement and Verification 
Method with I-Mathic Studio”, in Proceedings of Communicating Process 
Architectures 2006, IOS Press,  2006. 

Hoare C. A. R. (1978), Communicating sequential processes, Communications of 
the ACM, 21(8), 1978. 

Honeywell (2007), MetaH project, available at URL: 
http://www.htc.honeywell.com/metah/ 

Huang J., Voeten J., M. Groothuis M., Broenink J. and Corporaal H., A model-
driven design approach for mechatronic systems 

INMOS (1988), occam 2 Reference Manual, International Series in Computer 
Science, ed. C.A.R. Hoare, Prentice Hall. 

JCSP (2007),  University of Kent, The JCSP Homepage at 
URL:http://www.cs.kent.ac.uk/projects/ofa/jcsp/ 

Jovanovic D.S., Orlic B., Liet G.K.and Broenink  J.F.(2004), "gCSP: A Graphical 
Tool for Designing CSP systems", in:  Communicating Process Architectures 
2004, 5-8 Sept 2004, Oxford UK, pp 233 - 251, 1586034588, 2004.  

Jovanovic D.S., Orlic B. and Broenink J.F. (2005), "On issues of constructing an 
exception handling mechanism for CSP-based process-oriented concurrent 
software", in: Communicating Process Architectures 2005, Eindhoven, 18 - 21 
Sept. 2005, IOS Press, pp 29 - 41, ISBN: 1-58603-561-4, 2005.  

Jovanovic, D.S. (2006), "Designing dependable process-oriented software - a CSP-
based approach", p. vi +264, ISBN 90-365-2334-6, 2006.  

Kahn G. and MacQueen D. B. (1977), “Coroutines and networks of parallel 
processes”. In B. Gilchrist, editor, Information Processing. North-Holland 
Publishing Co., 1977. 

Keding H. (2004), Systems Verification, presented at ASCI winter school 2004 

Kock E. A. de, Essink G., Smits W. J. M., Wolf P. van der, Brunel J.-Y., Kruijtzer 
W., Lieverse P., and Vissers K. A. (2000), “Yapi: Application modeling for signal 
processing systems”, In 37th Design AutomationConference (DAC’00), pages 402–
405, Los Angeles, CA, 2000. 

Lange C.F.J., Chaudron M.R.V., Muskens J. (2006), “In practice: UML software 
architecture and design description”, IEEE software, vol. 23, pp. 40., 2006. 

Lee E.A. (2006), “The problem with threads”, IEEE Computer, vol.39, No. 5, pp. 
33-42, May 2006, available online as U.C. Berkeley EECS Department Technical 
Report UCB/EECS-2006-1 

Magee J. and Kramer J. (1999), “Concurrency: state models & Java programs”, 2nd 
ed., ISBN: 13 978-0-47009355-9, ISBN: 10 0-470-09355-2, John Wiley and Sons 
Ltd., 1999.  



References 235 

Maljaars, P. (2006), "Controllers for the Production Cell Set Up", Master’s thesis, 
MSc-Report 039CE2006, Control Laboratory, University of Twente, December 
2006. 

Marwedel P. (2003), “Embedded system design”, Kluwer Academic Pubilshers, 
Dordrecht, Netherlands., 2003. 

McConnellS.(2003),  Professional Software Development: Shorter Schedules, 
Higher Quality Products, More Successful Projects, Enhanced Careers. Addison-
Wesley Professional.  

Meyer B. (1992), Applying "Design by Contract”, Computer, IEEE, Volume 
25, Issue 10. 

Milner R. (1989), Communication and Concurrency, Prentice-Hall International 
Series in Computer Science,Prentice-Hall International, Englewood Cliffs. 

Milicev, D. (2002), "Domain Mapping Using Extended UML Object Diagrams," 
IEEE Software, Vol. 19, No. 2, March/April 2002, pp. 90-97 

Nienaltowski P., Meyer, B. (2006), “Contracts for concurrency”, Symposium on 
Concurrency, Real-Time, and Distribution in Eiffel-Like Languages CORDIE'06, 
York, United Kingdom, pp 27-49, 4-5 July 2006. 

Ommering R. van (2004), “Building Product Populations with Software 
Components”, PhD Thesis, Rijksuniversiteits Groningen, ISBN 90-74445-64-0. 
2004. 

Orlic, B. and Broenink J.F. (2004), Redesign of the C++ Communicating Threads 
Library for Embedded Control Systems, in 5th PROGRESS Symposium on 
Embedded Systems, F. Karelse, Editor.,STW: Nieuwegein, NL. p. 141-156. 

Orlic, B., Broenink, J.F. (2006a), "SystemCSP - Visual Notation", in: 
Communicationg Process Architectures 2006, Edinburg, edited by Welch, P.H., 
Kerridge, J., Barnes, F.R.M., pp. 151-177, ISBN 1-58603-671-8, 2006 

Orlic, B., Broenink, J.F. (2006b), "Interacting Components", in: Communicationg 
Process Architectures 2006, Edinburg, edited by Welch, P.H., Kerridge, J., Barnes, 
F.R.M., pp. 179-202, ISBN 1-58603-671-8, 2006 

Orlic, B. and J.F. Broenink (2007a), CSP and Real-TIme: Reality of Illusion? in: 
Communicating Process Architectures 2007, A. McEwan, S. Schneider, W. Ifill 
and P. H. Welch (Eds.), IOS Press, Guidford, UK, pp. 119-147, ISBN: 978-1-
58603-767-3, 2007. 

Orlic, B. and J.F. Broenink (2007b), Design Principles of the SystemSCP Software 
Framework, in: Communicating Process Architectures 2007, A. McEwan, S. 
Schneider, W. Ifill and P. H. Welch (Eds.), IOS Press, Guildford, UK, pp. 207-228, 
ISBN: 978-1-58603-767-3, 2007. 



236  References  

 

OPC (2007), at URL:  http://www.opcfoundation.org/. 

Ouaknine, J. and Worrell J. (2003), “Timed CSP = closed timed epsilon-
automata“,Nordic Journal of Computing, 10(2): pp99-133, 2003. 

POOSL (2007), at URL: http://www.es.ele.tue.nl/poosl/ 

Ptolemy (2007), Ptolemy II project, available at: 
http://www.ptolemy.eecs.berkeley.edu/ 

Pullum L. L. (2001), “Software Fault Tolerance Techniques and 
Implementation”Artech House, 2001. 

Roscoe A. W. (1997), “The Theory and Practice of Concurrency”, Prentice Hall. 

Scattergood B. (!998), “Tools for CSP and Timed CSP”, D.Phil Thesis, Oxford 
University, 1998. 

Schmerl B. and Garlan D. (2004), “AcmeStudio: Supporting Style-Centered 
Architecture Development”, In Proc. 2004 International Conference on Software 
Engineering, Edinburgh, Scotland, 2004. 

Schneider S. (2000), “Concurrent and Real-Time Systems: The CSP approach”, 
Wiley, 2000.. 

Szyperski C. (1998), “Component Software: Beyond Object-Oriented 
Programming”, Addison-Wesley and ACM Press, ISBN 0-201-17888-5, 1998. 

Sunter, J.P.E. (1994), “Allocation, Scheduling and Interfacing in Real-time Parallel 
Control Systems”, PhD thesis, University of Twente: Enschede, Netherlands, 1994. 

Sutter H. (2005), “The Free Lunch Is Over - A Fundamental Turn Toward 
Concurrency in Software”, Dr. Dobb's Journal, 30 (3); available at: 
http://www.gotw.ca/publications/concurrency-ddj.htm. 

Tanenbaum, A. (2001), “Modern Operating Systems”, Prentice Hall, 952 pages, 
2001. 

UPPAAL, (2007), at URL: http://www.uppaal.com/ 

Welch P.H. (1989), “Graceful termination - graceful resetting”, in Applying 
Transputer-Based Parallel Machines, Proceedings of 10th Occam User 
GroupTechnical Meeting, pages 310-317, Enschede, Netherlands, IOS Press, 
Amsterdam, 1989. 

Welch, P.H., May M.D., and Thompson P.W. (1993), “Networks, Routers and 
Transputers: Function, Performance and Application”, IOS Press, Netherlands, 
ISBN 90-5199-129-0, February 1993. 

Welch, P.H. and Wood D.C. (1996), “The Kent Retargetable occam Compiler”, in 
Parallel Processing Developments -- Proceedings of WoTUG 19, p. 143 -166, IOS 
Press: Nottingham, UK, 1996. 

Wittenmark B., Nilsson .J., Törngren M. (1995), “Timing problems in Real-time 
control systems”, in Proceedings of the American Control Conference, Seattle, 
June 1995. 



References 237 

Yeung W. L., Schneider S. A., and Tam F. (1998), “Design and verication of 
distributed recovery blocks in CSP”, Technical Report CSD-TR-98-08, Royal 
Holloway, University of London, 1998.  

Zhang, Y. (2005), “Real-Time Network for Distributed Control”, Master’s thesis, 
MSc-Report 031CE2005, Control Laboratory, University of Twente, August 2005. 

Zhang Y., Orlic B., Visser P.M. and Broenink J.F. (2005), “Hard Real-Time 
Networking on Firewire”, in: Proc. 7th Real-Time Linux Workshop, Lille, pp 1-8, 
3-4 Nov 2005. 

Zorzo A. F., Romanovsky A., Xu J., Randell B., Stroud R. J., and Welch I. S. 
(1999), “Using coordinated atomic actions to design safety-critical systems: a 
production cell case study”, in Software: practice & experience, vol. 29(8), pp. 
677-697, ISSN: 0038-0644, 1999. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



238  References  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

Curriculum Vitae 

 
Biography 
 
Born on 11th February 1976. in Bor, northeast Serbia. 

June 1994 - March 2001:  Electronics group, Faculty of Electrical Engineering, 
University of Belgrade, Yugoslavia; Average grade: 8.62 (of 10) 

01. May 2001 – 31. December 2001:  software developer in Research and 
Development department of Informatika AD company, Belgrade 

11. March 2002 – 10. March 2006:  Faculty of Electrical Engineering, University 
of Twente, Netherlands; Research assistant (Ph.D. candidate) at the Control 
Engineering group 

01. July 2006 – 01. October 2007: Faculty of Electrical Engineering, University of 
Twente, Netherlands; staff member at the Control Engineering group 

 
 
Research areas of interest: 
 
Real-time control systems; formal methods (CSP and other); graphical modeling 
languages for design specification; concurrency patterns (multithreading, 
synchronization, occam constructs…); metamodeling; component-based system 
architectures; real-time operating systems / kernels; industrial distributed systems 
interconnected via CAN, FireWire, Ethernet, Profibus, USB; simulation 
frameworks; fault tolerance; design patterns. 

 

 

 

 

 

 

 

 

 

 

 



    

 

 

 

 

 

 

 

 


